In the forebrain of domestic chicks, a network of distinct regions is crucially involved in auditory and visual filial imprinting. Among these areas, a distinct part of the dorsocaudal neostriatal complex (dNC complex), termed neostriatum dorsocaudale (Ndc), was recently discovered by its enhanced metabolic activity during the presentation of auditory and visual imprinting stimuli. Since there is evidence that the dNC complex consists of several distinct functional subareas, we investigated the neural connections of different parts of the dNC complex by retro- and anterograde pathway tracing. Special emphasis was put on the connections of the dNC complex with other imprinting relevant regions in the rostral telencephalon, such as the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the intermediate and medial part of the hyperstriatum ventrale (IMHV). By anterograde and multiple retrograde pathway tracing, we found that the dNC complex may at least be subdivided into three major constituents. The most medial part of the dNC complex, termed neostriatum dorsale (Nd), is characterized by strong reciprocal connections with the neostriatal part of the MNH and by its auditory related inputs, including those from the output layers L1 and L3 of field L, and the shell region of the thalamic n. ovoidalis. The Ndc, which occupies the central aspects of the dNC complex, is mainly characterized by reciprocal connections with the ectostriatal belt (Ep) and the adjacent neostriatum (N). Furthermore, Nd and Ndc receive strong thalamic input from the n. dorsolateralis posterior (DLP), both project to the IMHV, and both are reciprocally connected with the archistriatum intermedium (AI). The most lateral aspect of the dNC complex, termed Ndl, is characterized by afferents from the neostriatum frontale, pars trigeminalis (NFT), and by the lack of a thalamic input. Results indicate that the dNC complex comprises distinct subregions, which are characterized by their specific afferents from parasensory areas of different sensory modalities. These different subregions may be integral components of a general pattern of sensory processing in the avian telencephalon. The strong interconnections between Nd, Ndc, and MNH as well as IMHV may constitute essential parts of auditory and visual imprinting circuits.
The mediorostral neostriatum/hyperstriatum ventrale (MNH) and neostriatum dorsocaudale (Ndc) of the domestic chick are crucially involved in auditory filial imprinting, whereas the lobus parolfactorius (LPO) seems to be involved in the emotional modulation of behavior. Because there is evidence that MNH and Ndc are akin to higher association areas in mammals, the present study evaluates the dopaminergic and thalamic input to these areas, as well as to the avian caudate/putamen homologue LPO, by using retrograde pathway tracing, together with dopamine (DA) and tyrosine hydroxylase (TH) immunohistochemistry. By combining DA immunohistochemistry with retrograde fluorescent tracing, we demonstrated that dopaminergic afferents to the MNH and Ndc arise mainly from the area ventralis, whereas the main dopaminergic input to the LPO arises from the substantia nigra. The main thalamic input to the MNH and LPO arises from the dorsal thalamic nuclei, n. dorsomedialis anterior and n. dorsolateralis anterior, whereas the thalamic input to the Ndc arises from the n. dorsolateralis posterior and n. subrotundus. Furthermore, there are reciprocal intratelencephalic connections between distinct parts of the neostriatum caudale and the mediorostral neostriatum. DA-immunoreactive (ir) fibers are present at moderate densities in the MNH and Ndc and at high densities in the LPO. At the ultrastructural level, DA- and TH-ir axon terminals in the MNH and Ndc form predominantly symmetric synaptic contacts with dendritic shafts, which are often situated in close vicinity to unstained terminals. These results indicate that the general organization of dopaminergic afferents to the chick telecephalon is similar to that of the mesotelencephalic dopaminergic subsystems in mammals such as the mesostriatal and mesolimbocortical DA system.
Central nervous system (CNS) astrocytes release guanosine extracellularly, that exerts trophic effects. In CNS, extracellular guanosine (GUO) stimulates mitosis, synthesis of trophic factors, and cell differentiation, including neuritogenesis, is neuroprotective, and reduces apoptosis due to several stimuli. Specific receptor-like binding sites for eGUO in the nervous system may mediate its effects through both MAP kinase and PI3-kinase signalling pathways. Extracellular guanine (eGUA) also exerts several effects; the trophic effects of eGUO are likely regulated by conversion of eGUO to eGUA by a membrane located purine nucleoside phosphorylase (ecto-PNP) and by conversion of eGUA to xanthine by guanine deaminase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.