Background Worldwide, mental well-being is a critical issue for public health, especially among medical staff; it affects professionalism, efficiency, quality of care delivery, and overall quality of life. Nevertheless, assessing mental well-being is a complex problem. Objective This study aimed to evaluate the psychometric properties of the Chinese-language version of the 14-item Warwick-Edinburgh Mental Well-being Scale (WEMWBS) in medical staff recruited mainly from 6 hospitals in China and provide a reliable measurement of positive mental well-being. Methods A cross-sectional online survey was conducted of medical staff from 15 provinces in China from May 15 to July 15, 2020. Confirmatory factor analysis (CFA) was conducted to test the structure of the Chinese WEMWBS. The Spearman correlations of the Chinese WEMWBS with the 5-item World Health Organization Well-Being Index (WHO-5) were used to evaluate convergent validity. The Cronbach α and split-half reliability (λ) represented internal consistency. A graded response model was adopted for an item response theory (IRT) analysis. We report discrimination, difficulty, item characteristic curves (ICCs), and item information curves (IICs). ICCs and IICs were used to estimate reliability and validity based on the IRT analysis. Results A total of 572 participants from 15 provinces in China finished the Chinese WEMWBS. The CFA showed that the 1D model was satisfactory and internal consistency reliability was excellent, with α=.965 and λ=0.947, while the item-scale correlation coefficients ranged from r=0.727 to r=0.900. The correlation coefficient between the Chinese WEMWBS and the WHO-5 was significant, at r=0.746. The average variance extraction value was 0.656, and the composite reliability value was 0.964, with good aggregation validity. The discrimination of the Chinese WEMWBS items ranged from 2.026 to 5.098. The ICCs illustrated that the orders of the category thresholds for the 14 items were satisfactory. Conclusions The Chinese WEMWBS showed good psychometric properties and can measure well-being in medical staff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.