The accurate prediction of drug–target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predictions. In this study, we propose a novel model for DTA prediction named MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph neural networks (GNNs). To address the challenge of accurately extracting drug and target protein features, we introduce a gated skip-connection mechanism during the feature learning process to fuse multi-scale topological features, resulting in information-rich representations of drugs and proteins. Our approach constructs drug atom graphs, motif graphs, and weighted protein graphs to fully extract topological information and provide a comprehensive understanding of underlying molecular interactions from multiple perspectives. Experimental results on two benchmark datasets demonstrate that MSGNN-DTA outperforms the state-of-the-art models in all evaluation metrics, showcasing the effectiveness of the proposed approach. Moreover, the study conducts a case study based on already FDA-approved drugs in the DrugBank dataset to highlight the potential of the MSGNN-DTA framework in identifying drug candidates for specific targets, which could accelerate the process of virtual screening and drug repositioning.
Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA–disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a ‘hint’ so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.
MicroRNA (miRNA)-disease association (MDA) prediction is critical for disease prevention, diagnosis, and treatment. Traditional MDA wet experiments, on the other hand, are inefficient and costly.Therefore, we proposed a multi-layer collaborative unsupervised training base model called SGAEMDA (Stacked Graph Autoencoder-Based Prediction of Potential miRNA-Disease Associations). First, from the original miRNA and disease data, we defined two types of initial features: similarity features and association features. Second, stacked graph autoencoder is then used to learn unsupervised low-dimensional representations of meaningful higher-order similarity features, and we concatenate the association features with the learned low-dimensional representations to obtain the final miRNA-disease pair features. Finally, we used a multilayer perceptron (MLP) to predict scores for unknown miRNA-disease associations. SGAEMDA achieved a mean area under the ROC curve of 0.9585 and 0.9516 in 5-fold and 10-fold cross-validation, which is significantly higher than the other baseline methods. Furthermore, case studies have shown that SGAEMDA can accurately predict candidate miRNAs for brain, breast, colon, and kidney neoplasms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.