The high efficiency of the flywheel hybrid powertrain, as well as its power characteristics, can help to meet high energy/power conversion needs, which may prove to be promising. Moreover, the flywheel hybrid powertrain may reduce dependence on batteries. This paper presents the EC-BERS in order to capture more mechanical power than its rated power, and to reduce the charge/discharge cycles of the battery. In this new energy recovery system, maximum torque can be obtained in the higher speed zone, leading to two marked improvements in terms of improving the braking efficiency. The working point of the system changes and shifts to the high-speed zone to meet the maximum torque at higher speeds. Furthermore, this powertrain can transfer the vehicle kinetic energy into the flywheel directly in the same form. Only the slip energy needs to be dealt with in the electrical form, which is beneficial to prolonging the battery life. Two typical systems were emulated under the same conditions to verify this feature, and a small prototype was designed to prove the concept.
To decrease track derailment of tracked fire trucks in forested areas, a fish-bellied swing arm torsion bar suspension system is proposed in this research. Derived from a tracked forest fire engine, this study converts the shaft tube swing arm of the original vehicle to a fish-bellied swing arm, improving the semi-rigid shaft tube suspension to a torsion bar suspension. Static and kinematic simulation analysis of the improved virtual sample vehicle is carried out, and the stress and dynamic characteristics before and after the improvement are analyzed. The simulation force cloud diagram of the improved swing arm and the motion simulation curve of the supporting wheel is obtained. The results show that the design of the fish-bellied swing arm can effectively reduce the bending moment caused by force acting on the swing arm, and that the design of the torsion bar spring suspension can reduce vertical displacement of the supporting wheel by 58.53%, and reduces horizontal displacement by 46.58% under the same impact force. According to the design of the virtual sample to build a prototype vehicle, a comparative test is carried out to determine an optimized virtual sample vehicle. The results show that the trend of the test curve is essentially consistent with that of the simulation curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.