Blend films of feather keratin (FK) and synthetic poly(vinyl alcohol) (PVA) that were compatibilized by tris(hydroxymethyl)aminomethane (Tris) were successfully prepared by a solution-casting method. The scanning electron microscopy (SEM) results showed that a phase separation occurred in the FK/PVA/Tris blended system. Analysis by Fourier transform infrared spectroscopy indicated that the main interactions between the three components were hydrogen bonds. In addition, X-ray diffraction analysis showed that the FK/PVA/Tris blend films were partially crystalline. The barrier properties, mechanical properties, and contact angles of the FK/PVA/Tris films were investigated to determine the effects of the PVA and Tris concentrations. More specifically, upon increasing the PVA content, the elongation at break, the hydrophilicity, and the oxygen barrier properties were enhanced. However, at a constant PVA content, an increase in the Tris content caused the oxygen permeability and the contact angle to decrease, while the tensile strength, elongation at break, and oxygen barrier properties were enhanced. These results indicated that the mechanical properties and gas resistance of the FK/PVA/Tris blend films could be successfully improved using the method described herein, confirming that this route provided a convenient and promising means to prepare FK plastics for practical applications.
Poly(phenyl-substituted siloxanes/silsesquioxanes) are obtained by the Piers–Rubinsztajn (PR) reaction of hydrogen-containing siloxanes (HCS) with diphenyldialkoxysilanes such as diphenyldimethoxysilane and diphenyldiethoxysilane catalyzed by tris(pentafluorophenyl)borane. 29Si nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography, and refractive index analysis revealed that apart from phenyl substituents and complex structures such as molecular bridges composed of D2Ph2[(C6H5)2Si(OSi)2], structures also existed in these polymers, having high refractive indexes (above 1.50) and high molecular weights (75.60 KDa·mol−1). As revealed by thermogravimetric analysis, these polymers have high thermal stability as well, with temperature at 5% mass loss (T5%) increasing by 182.5 °C and Rw (residual weight ratio) increasing by 5.17 times from 14.63% to 75.60%, as compared to HCS, exhibiting its potential application as resins for resisting strong heat. Such high-refractive-index and temperature-resistant poly(phenyl-substituted siloxanes/silsesquioxanes) with Si–H and alkoxy functional groups can be used as a good addition-type crosslinking agent with adhesion-promoting properties or a special curing agent that can solidify silicone materials through simultaneous addition and condensation reactions, which has potential application in the light-emitting diode (LED) packaging industry.
The high moisture sensitivity of feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) blend films hinders their application in the packaging field. Thus, in order to improve the water resistance and mechanical properties of such blend films, we attempted cross-linking the blend film with cross-linking agents such as transglutaminase (TG), CaCl2, and genipin. Obvious differences in the morphology of the blended films were observed by scanning electron microscopy before and after cross-linking, indicating that cross-linking can inhibit the phase separation of the blend film. Conformational changes in the blend films after cross-linking were detected by Fourier transform infrared spectroscopy. Importantly, from examination of the total soluble mass, contact angle measurements, and water vapor permeability tests, it was apparent that cross-linking greatly improved the water resistance of the blend films, in addition to enhancing the mechanical properties (i.e., tensile strength and elongation at break). However, cross-linking was also found to reduce the oxygen barrier properties of the blend films. Therefore, cross-linking appears to be an effective method for promoting the application of FK/PVA/Tris blend films in the packaging field.
In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.