Ethylene has been regarded as a stress hormone involved in many stress responses. However, ethylene receptors have not been studied for the roles they played under salt stress condition. Previously, we characterized an ethylene receptor gene NTHK1 from tobacco, and found that NTHK1 is saltinducible. Here, we report a further investigation towards the function of NTHK1 in response to salt stress by using a transgenic approach. We found that NTHK1 promotes leaf growth in the transgenic tobacco seedlings but affects salt sensitivity in these transgenic seedlings under salt stress condition. Differential Na +
/K+ ratio was observed in the control Xanthi and NTHK1 -transgenic plants after salt stress treatment. We further found that the NTHK1 transgene is also salt-inducible in the transgenic plants, and the higher NTHK1 expression results in early inductions of the ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene NtACO3 and ethylene responsive factor (ERF) genes NtERF1 and NtERF4 under salt stress. However, NTHK1 suppresses the salt-inducible expression of the ACC synthase gene NtACS1 . These results indicate that NTHK1 regulates salt stress responses by affecting ion accumulation and related gene expressions, and hence have significance in elucidation of ethylene receptor functions during stress signal transduction.
Background and Aims
Hepatocellular carcinoma (HCC) is the third leading cause of cancer‐related deaths worldwide, hence a major public health threat. Pleomorphic adenoma gene like‐2 (PLAGL2) has been reported to play a role in tumorigenesis. However, its precise function in HCC remains poorly understood.
Approach and Results
In this study, we demonstrated that PLAGL2 was up‐regulated in HCC compared with that of adjacent nontumorous tissues and also correlated with overall survival times. We further showed that PLAGL2 promoted HCC cell proliferation, migration, and invasion both in vitro and in vivo. PLAGL2 expression was positively correlated with epidermal growth factor receptor (EGFR) expression. Mechanistically, this study demonstrated that PLAGL2 functions as a transcriptional regulator of EGFR and promotes HCC cell proliferation, migration, and invasion through the EGFR‐AKT pathway. Moreover, hypoxia was found to significantly induce high expression of PLAGL2, which promoted hypoxia inducible factor 1/2 alpha subunit (HIF1/2A) expression through EGFR. Therefore, this study demonstrated that a PLAGL2‐EGFR‐HIF1/2A signaling loop promotes HCC progression. More importantly, PLAGL2 expression reduced hepatoma cells’ response to the anti‐EGFR drug erlotinib. PLAGL2 knockdown enhanced the response to erlotinib.
Conclusions
This study reveals the pivotal role of PLAGL2 in HCC cell proliferation, metastasis, and erlotinib insensitivity. This suggests that PLAGL2 can be a potential therapeutic target of HCC.
Antifungal resistance due to upregulation of efflux pumps is prevalent in clinical Candida isolates. Potential efflux pump substrates (PEPSs), which are active against strains deficient in efflux pumps but inactive against wild-type strains, are usually missed in routine antifungal screening. Here we present a method for identification of PEPSs, and show that conjugation with mitochondria-targeting triphenylphosphonium cation (TPP+) can enhance or restore the compounds’ antifungal activity. The screening method involves co-culturing a wild-type C. albicans strain and a Cdr efflux pump-deficient strain, labelled with different fluorescent proteins. We identify several PEPSs from a library of natural terpenes, and restore their antifungal activity against wild-type and azole-resistant C. albicans by conjugation with TPP+. The most active conjugate (IS-2-Pi-TPP) kills C. albicans cells, prevents biofilm formation and eliminates preformed biofilms, without inducing significant resistance. The antifungal activity is accompanied by mitochondrial dysfunction and increased levels of intracellular reactive oxygen species. In addition, IS-2-Pi-TPP is effective against C. albicans in a mouse model of skin infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.