Between 1 January 1980, and 30 September 1989, 93 cases of exposure to herbicides containing glyphosphate and surfactant ('Roundup') were treated at Changhua Christian Hospital. The average amount of the 41% solution of glyphosate herbicide ingested by non-survivors was 184 ± 70 ml (range 85-200 ml), but much larger amounts (500 ml) were reported to have been ingested by some patients and only resulted in mild to moderate symptomatology. Accidental exposure was asymptomatic after dermal contact with spray (six cases), while mild oral discomfort occurred after accidental ingestion (13 cases). Intentional ingestion (80 cases) resulted in erosion of the gastrointestinal tract (66%), seen as sore throat (43%), dysphagia (31%), and gastrointestinal haemorrhage (8%). Other organs were affected less often (non-specific leucocytosis 65%, lung 23%, liver 19%, cardiovascular 18%, kidney 14%, and CNS 12%). There were seven deaths, all of which occurred within hours of ingestion, two before the patient arrived at the hospital. Deaths following ingestion of 'Roundup' alone were due to a syndrome that involved hypotension, unresponsive to intravenous fluids or vasopressor drugs, and sometimes pulmonary oedema, in the presence of normal central venous pressure.
Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.
The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.