The semantic information in any document collection is critical for query understanding in information retrieval. Existing concept lattice-based retrieval systems mainly rely on the partial order relation of formal concepts to index documents. However, the methods used by these systems often ignore the explicit semantic information between the formal concepts extracted from the collection. In this paper, a concept coupling relationship analysis model is proposed to learn and aggregate the intra-and inter-concept coupling relationships. The intra-concept coupling relationship employs the common terms of formal concepts to describe the explicit semantics of formal concepts. The inter-concept coupling relationship adopts the partial order relation of formal concepts to capture the implicit dependency of formal concepts. Based on the concept coupling relationship analysis model, we propose a concept lattice-based retrieval framework. This framework represents user queries and documents in a concept space based on fuzzy formal concept analysis, utilizes a concept lattice as a semantic index to organize documents, and ranks documents with respect to the learned concept coupling relationships. Experiments are performed on the text collections acquired from the SMART information retrieval system. Compared with classic concept lattice-based retrieval methods, our proposed method achieves at least 9%, 8% and 15% improvement in terms of average MAP, IAP@11 and P@10 respectively on all the collections.
Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers cannot see a panorama of the graph neural networks. This survey aims to overcome this limitation and provide a systematic and comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 327 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the challenges faced. It is expected that more and more scholars can understand and exploit the graph neural networks and use them in their research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.