Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study.
Three types of transgenic tobacco plants were acquired by separate transformation or co-transformation of a vacuolar Na(+)/H(+) antiporter gene, SeNHX1, and a betaine synthesis gene, BADH. When exposed to 200 mM NaCl, the dual gene-transformed plants displayed greater accumulation of betaine and Na(+) than their wild-type counterparts. Photosynthetic rate and photosystem II activity in the transgenic plants were less affected by salt stress than wild-type plants. Transgenic plants exhibited a greater increase in osmotic pressure than wild-type plants when exposed to NaCl. More importantly, the dual gene transformed plants accumulated higher biomass than either of the single transgenic plants under salt stress. Taken together, these findings indicate that simultaneous transformation of BADH and SeNHX1 genes into tobacco plants can enable plants to accumulate betaine and Na(+), thus conferring them more tolerance to salinity than either of the single gene transformed plants or wild-type tobacco plants.
St. John's wort (Hypericum perforatum, SJW) is one of the most commonly used herbal antidepressants for the treatment of minor to moderate depression. A major safety concern about SJW is its ability to alter the pharmacokinetics and/or clinical response of a variety of clinically important drugs that have distinctive chemical structure, mechanism of action and metabolic pathways. This review highlights and updates the knowledge on clinical interactions of prescribed drugs with SJW and the implication in drug development. A number of clinically significant interactions of SJW have been identified with conventional drugs, including anticancer agents (imatinib and irinotecan), anti-HIV agents (e.g. indinavir, lamivudine and nevirapine), anti-inflammatory agents (e.g. ibuprofen and fexofenadine), antimicrobial agents (e.g. erythromycin and voriconazole), cardiovascular drugs (e.g. digoxin, ivabradine, warfarin, verapamil, nifedipine and talinolol), central nervous system agents (e.g. amitriptyline, buspirone, phenytoin, methadone, midazolam, alprazolam, and sertraline), hypoglycaemic agents (e.g. tolbutamide and gliclazide), immuno-modulating agents (e.g. cyclosporine and tacrolimus), oral contraceptives, proton pump inhibitor (e.g. omeprazole), respiratory system agent (e.g. theophylline), statins (e.g. atorvastatin and pravastatin). Both pharmacokinetic and pharmacodynamic components may play a role in the interactions of drugs with SJW. For pharmacokinetic changes of drugs by SJW, induction of cytochrome P450s (e.g. CYP2C9 and 3A4) and P-glycoprotein (P-gp) are considered the major mechanism. Thus, it is not a surprise that many drugs that interact with SJW are substrates of CYP3A4, CYP2C9 and P-gp. A comprehensive understanding of clinical drugs that interact with SJW has important implications in drug development. New drugs may be designed to minimize interactions with SJW; and new SJW formulations may be designed to avoid drug interactions. Further clinical and mechanistic studies are warranted to explore the interaction of SJW with other important drugs and the potential clinical impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.