Introduction: Programmed death receptor-1 (PD-1) inhibitors have shown efficacy in first-line treatment of NSCLC; however, evidence of PD-1 inhibitor as neoadjuvant treatment is limited. This is a phase 1b study to evaluate the safety and outcome of PD-1 inhibitor in neoadjuvant setting. Methods: Treatment-naive patients with resectable NSCLC (stage IA-IIIB) received two cycles of sintilimab (200 mg, intravenously, day 1 out of 22). Operation was performed between day 29 and 43. Positron emission tomographycomputed tomography scans were obtained at baseline and before the operation. The primary end point was safety. Efficacy end points included rate of major pathologic response (MPR) and objective response rate. Expression of programmed cell death ligand 1 was also evaluated (registration number: ChiCTR-OIC-17013726). Results: A total of 40 patients enrolled, all of whom received two doses of sintilimab and 37 underwent radical resection. A total of 21 patients (52.5%) experienced neoadjuvant treatment-related adverse events (TRAEs). Four patients (10.0%) experienced grade 3 or higher neoadjuvant TRAEs, and one patient had grade 5 TRAE. Eight patients achieved radiological partial response, resulting in an objective response rate of 20.0%. Among 37 patients, 15 (40.5%) achieved MPR, including six (16.2%) with a pathologic complete response in primary tumor and three (8.1%) in lymph nodes as well. Squamous cell NSCLC exhibited superior response compared with adenocarcinoma (MPR: 48.4% versus 0%). Decrease of maximum standardized uptake values after sintilimab treatment correlated with pathologic remission (p < 0.00001). Baseline programmed cell death ligand 1 expression of stromal cells instead of tumor cells was correlated with pathologic regression (p ¼ 0.0471).
IMPORTANCEThe role of postoperative radiotherapy (PORT) has not been well defined in resected pIIIA-N2 non-small cell lung cancer (NSCLC).OBJECTIVE To evaluate the effect of PORT using modern techniques on survival and safety in patients with pIIIA-N2 NSCLC after complete resection and adjuvant chemotherapy. DESIGN, SETTING, AND PARTICIPANTS The PORT-C randomized clinical trial was conducted in 394 patients with pIIIA-N2 NSCLC treated with complete resection and 4 cycles of platinum-based chemotherapy between January 2009 and December 2017. Data were analyzed between March 2019 and December 2020. INTERVENTIONS Patients were randomized equally into the PORT arm (n = 202) or the observation arm (n = 192). The total dose of PORT was 50 Gy. MAIN OUTCOMES AND MEASURESThe primary end point was disease-free survival (DFS). Secondary end points included overall survival (OS), locoregional recurrence-free survival (LRFS), distant metastasis-free survival, and toxic effects.RESULTS In total, 394 patients were enrolled and 364 were eligible, with a median (range) age of 55 (25-70) years. There were 202 (55.5%) male and 162 (44.5%) female patients. The median follow-up was 46.0 (95% CI, 41.9-51.4) months, and 230 DFS events were reported. There were 184 patients in the PORT arm and 180 patients in the observation arm. The 3-year DFS rates were 40.5% with PORT vs 32.7% with observation (median, 22.1 vs 18.6 months), and the difference in DFS was not statistically significant without adjustment (hazard ratio [HR], 0.84; 95% CI, 0.65-1.09; P = .20), though it was significant with preplanned yet exploratory analysis (stratified analysis by the number of detected lymph nodes and positive lymph nodes, HR, 0.75; log-rank P = .04). The 3-year OS rates were 78.3% vs 82.8% (HR, 1.02; P = .93), and LRFS was 66.5% vs 59.7% (HR, 0.71; 95% CI, 0.51-0.97; P = .03), respectively. For 310 per-protocol patients (140 with PORT and 170 with observation), PORT significantly improved DFS (42.8% vs 30.6%; HR, 0.75; 95% CI, 0.57-1.00; P = .05) but not OS (HR, 0.83; 95% CI, 0.53-1.30; P = .41). The 3-year local recurrence only rates were 9.5% and 18.3% in the 2 arms, respectively (Fine-Gray HR, 0.55; Gray test P = .04). No radiotherapy-related grade 4 or 5 adverse event was observed. CONCLUSIONS AND RELEVANCEIn this phase 3 randomized clinical trial of patients with pIIIA-N2 NSCLC after complete resection and adjuvant chemotherapy, PORT did not improve DFS. Further studies exploring patients who might best benefit from PORT are needed.TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00880971
Osteosarcoma is the most common primary bone malignancy, and the lung is the most frequent site of metastasis. The limited understanding of the tumoral heterogeneity and evolutionary process of genomic alterations in pulmonary metastatic osteosarcoma impedes development of novel therapeutic strategies. Here we systematically illustrate the genomic disparities between primary tumors and corresponding pulmonary metastatic tumors by multiregional whole-exome and whole-genome sequencing in 86 tumor regions from 10 patients with osteosarcoma. Metastatic tumors exhibited a significantly higher mutational burden and genomic instability compared with primary tumors, possibly due to accumulation of mutations caused by a greater number of alterations in DNA damage response genes in metastatic tumors. Integrated analysis of the architecture and relationships of subclones revealed a dynamic mutational process and diverse dissemination patterns of osteosarcoma during pulmonary metastasis (6/10 with linear and 4/10 with parallel evolution-ary patterns). All patients demonstrated more significant intertumoral rather than intratumoral heterogeneity between primary tumors and metastatic tumors. Mutated genes were enriched in the PI3K-Akt pathway at both the early and late stages of tumor evolution and in the MAPK pathway at the metastatic stage. Conversely, metastatic tumors showed improved immunogenicity, including higher neoantigen load, elevated PD-L1 expression, and tumor-infiltrating lymphocytes than the corresponding primary tumors. Our study is the first to report the dynamic evolutionary process and temporospatial tumor heterogeneity of pulmonary metastatic osteosarcoma, providing new insights for diagnosis and potential therapeutic strategies for pulmonary metastasis.Significance: High-throughput sequencing of primary and metastatic osteosarcoma provides new insights into the diagnosis of and potential clinical therapeutic strategies for pulmonary metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.