Recent research shows that deep-learning-derived methods based on a deep convolutional neural network have high accuracy when applied to hyperspectral image (HSI) classification, but long training times. To reduce the training time and improve accuracy, in this paper we propose an end-to-end fast dense spectral-spatial convolution (FDSSC) framework for HSI classification. The FDSSC framework uses different convolutional kernel sizes to extract spectral and spatial features separately, and the "valid" convolution method to reduce the high dimensions. Densely-connected structures-the input of each convolution consisting of the output of all previous convolution layers-was used for deep learning of features, leading to extremely accurate classification. To increase speed and prevent overfitting, the FDSSC framework uses a dynamic learning rate, parametric rectified linear units, batch normalization, and dropout layers. These attributes enable the FDSSC framework to achieve accuracy within as few as 80 epochs. The experimental results show that with the Indian Pines, Kennedy Space Center, and University of Pavia datasets, the proposed FDSSC framework achieved state-of-the-art performance compared with existing deep-learning-based methods while significantly reducing the training time.
The connection structure in the convolutional layers of most deep learning-based algorithms used for the classification of hyperspectral images (HSIs) has typically been in the forward direction. In this study, an end-to-end alternately updated spectral–spatial convolutional network (AUSSC) with a recurrent feedback structure is used to learn refined spectral and spatial features for HSI classification. The proposed AUSSC includes alternating updated blocks in which each layer serves as both an input and an output for the other layers. The AUSSC can refine spectral and spatial features many times under fixed parameters. A center loss function is introduced as an auxiliary objective function to improve the discrimination of features acquired by the model. Additionally, the AUSSC utilizes smaller convolutional kernels than other convolutional neural network (CNN)-based methods to reduce the number of parameters and alleviate overfitting. The proposed method was implemented on four HSI data sets, as follows: Indian Pines, Kennedy Space Center, Salinas Scene, and Houston. Experimental results demonstrated that the proposed AUSSC outperformed the HSI classification accuracy obtained by state-of-the-art deep learning-based methods with a small number of training samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.