The Internet of Things (IoT) strongly influences the world economy; this emphasizes the importance of securing all four aspects of the IoT model: sensors, networks, cloud, and applications. Considering the significant value of public-key cryptography threats on IoT system confidentiality, it is vital to secure it. One of the potential candidates to assist in securing public key cryptography in IoT is quantum computing. Although the notion of IoT and quantum computing convergence is not new, it has been referenced in various works of literature and covered by many scholars. Quantum computing eliminates most of the challenges in IoT. This research provides a comprehensive introduction to the Internet of Things and quantum computing before moving on to public-key cryptography difficulties that may be encountered across the convergence of quantum computing and IoT. An enhanced architecture is then proposed for resolving these public-key cryptography challenges using SimuloQron to implement the BB84 protocol for quantum key distribution (QKD) and one-time pad (OTP). The proposed model prevents eavesdroppers from performing destructive operations in the communication channel and cyber side by preserving its state and protecting the public key using quantum cryptography and the BB84 protocol. A modified version is introduced for this IoT situation. A traditional cryptographic mechanism called “one-time pad” (OTP) is employed in hybrid management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.