Blood glucose (BG) prediction system can help gestational diabetes mellitus (GDM) patient to improve the BG control with managing their dietary intake based on healthy food. Many techniques have been developed to deal with blood glucose prediction, especially those for recommender system. In this study, we conduct a systematic mapping study to investigate recent research about BG prediction in recommender systems. This study describes an overview of research (2014-2018) about BG prediction techniques that has been used for BG recommender system. As results, 25 studies concerning BG prediction in recommender system were selected. We observed that although there is numerous studies published, only a few studies took serious discussion about techniques used to incorporate the BG algorithms. Our result highlighted that only one study discusses hybrid filtering technique in BG recommender system for GDM even though it has an ability to learn from experience and to improve prediction performance. We hope that this study will encourage researchers to consider not only machine learning and artificial intelligent techniques but also hybrid filtering technique for BG recommender system in the future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.