Lung cancer is the first leading cause of cancer deaths worldwide. Non‐small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence shows that long noncoding RNA (lncRNA) are capable of modulating tumor initiation, proliferation and metastasis. In the present study, we aimed to evaluate whether circulating lncRNA could be used as biomarkers for diagnosis and prognosis of NSCLC. Expression profiles of 14 lncRNA selected from other studies were validated in 20 pairs of tissues by quantitative real‐time PCR, and the dysregulated lncRNA thus identified were further validated in serum samples from two independent cohorts along with three tumor makers (CEA, CYFRA21‐1, and SCCA). Receiver‐operating characteristic analysis was utilized to estimate the diagnostic efficiency of the candidate lncRNA and tumor markers. Importantly, we observed an association between lncRNA expression and overall survival (OS) rate of NSCLC. The expressions of SOX2 overlapping transcript (SOX2OT) and ANRIL were obviously upregulated in NSCLC tissues and serum samples compared with normal controls (P < 0.01). Based on the data from the training set, we next used a logistic regression model to construct an NSCLC diagnostic panel consisting of two lncRNA and three tumor markers. The area under the curve of this panel was 0.853 (95% confidence interval = 0.804–0.894, sensitivity = 77.1%, specificity = 79.2%), and this was distinctly superior to any biomarker alone (all at P < 0.05). Similar results were observed in the validation set. Intriguingly, Kaplan–Meier analysis demonstrated that low expressions of SOX2OT and ANRIL were both associated with higher OS rate (P = 0.008 and 0.017, respectively), and SOX2OT could be used as an independent prognostic factor (P = 0.036). Taken together, our study demonstrated that the newly developed diagnostic panel consisting of SOX2OT, ANRIL, CEA, CYFRA21‐1, and SCCA could be valuable in NSCLC diagnosis. LncRNA SOX2OT and ANRIL might be ideal biomarkers for NSCLC prognosis.
Nowadays, some evidences demonstrate that human mesenchymal stem cells (hMSCs) favor tumor growth; however, others show that hMSCs can suppress tumorigenesis and tumor growth. With the indeterminateness of the effect of hMSCs on tumors, we investigated the effect of hMSCs on lung cancer cell line A549 and esophageal cancer cell line Eca-109 in vitro and in vivo. Our results revealed that hMSCs inhibited the proliferation and invasion of A549 and Eca-109 cells, arrested tumor cells in the G1 phase of the cell cycle and induced the apoptosis of tumor cells in vitro by using a co-culture system and the hMSCs-conditioned medium. However, animal study showed that hMSCs enhanced tumor formation and growth in vivo. Western blotting and immunoprecipitation data showed that the expressions of proliferating cell nuclear antigen (PCNA), Cyclin E, phospho-retinoblastoma protein (pRb), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL, and matrix metalloproteinase 2 (MMP-2) were downregulated and the formation of Cyclin E-cyclin-dependent kinase 2 (CDK2) complexes was inhibited in the tumor cells treated with the hMSCs-conditioned medium. According to the observation of tumor mass and the result of microvessel density (MVD), we found that the promoting role of hMSCs on tumor growth was related with the increase of tumor vessel formation. Our present study suggests that hMSCs have a contradictory effect on tumor cell growth between in vitro and in vivo, and therefore, the exploitation of hMSCs in new therapeutic strategies should be cautious under the malignant conditions.
MTA1 protein overexpression is common in early-stage NSCLC and is significantly associated with tumor angiogenesis and poor survival. These findings suggest that MTA1 may have clinical potential as a promising predictor to identify individuals with poor prognostic potential and as a possible novel target molecule of antiangiogenic therapy for patients with early-stage NSCLC.
There are many articles in the literature dealing with the first-order and the second-order differential subordination and superordination problems for analytic functions in the unit disk, but only a few articles are dealing with the above problems in the third-order case (see, e.g., Antonino and Miller (2011) and Ponnusamy et al. (1992)). The concept of the third-order differential subordination in the unit disk was introduced by Antonino and Miller in (2011). Let Ω be a set in the complex planeC. Also letpbe analytic in the unit diskU=z:z∈C and z<1and suppose thatψ:C4×U→C. In this paper, we investigate the problem of determining properties of functionsp(z)that satisfy the following third-order differential superordination:Ω⊂ψpz,zp′z,z2p′′z,z3p′′′z;z:z∈U. As applications, we derive some third-order differential subordination and superordination results for meromorphically multivalent functions, which are defined by a family of convolution operators involving the Liu-Srivastava operator. The results are obtained by considering suitable classes of admissible functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.