Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors – the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood–brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Spinal cord injury (SCI) often leads to permanent disability, which is mainly caused by the loss of functional recovery. In this review, we aimed to investigate why the healing process is interrupted. One of the reasons for this interruption is the formation of a glial scar around the severely damaged tissue, which is usually covered by reactive glia, macrophages and fibroblasts. Aiming to clarify this issue, we summarize the latest research findings pertaining to scar formation, tissue repair, and the divergent roles of blood-derived monocytes/macrophages, ependymal cells, fibroblasts, microglia, oligodendrocyte progenitor cells (OPCs), neuron-glial antigen 2 (NG2) and astrocytes during the process of scar formation, and further analyse the contribution of these cells to scar formation. In addition, we recapitulate the development of therapeutic treatments targeting glial scar components. Altogether, we aim to present a comprehensive decoding of the glial scar and explore potential therapeutic strategies for improving functional recovery after SCI.
Adult regeneration in spinal cord is poor in mammalian but remarkable in the neonatal mammals and some vertebrates, including fish and salamanders. Increasing evidences basis of this interspecies and ontogeny highlighted the pivotal roles of neuron extrinsic factors-the glial scar, which exert confusing inhibiting or promoting regeneration function, but the spatiotemporal ordering of cellular and molecular events that drive repair processes in scar formation remains poorly understood. Here, we firstly constructed tissue-wide gene expression measurements of mouse spinal cords over the course of scar formation using the spatial transcriptomics (ST) technology in Spinal cord injury (SCI) repair. We analyzed the transcriptomes of nearly 15449 spots from 32 samples and distinguished normal and damage response regions. Compared to histological changes, spatial mapping of differentiation transitions in spinal cord injury site delineated the possible trajectory between subpopulations of fibroblast, glia and immune cell more comprehensively and defined the extent of scar boundary and core more accurately. Locally, we identified gene expression gradients from leading edge to the core of scar areas that allow for re-understanding of the scar microenvironment and found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophage, CD36 and Postn in fibroblast, Plxnb2 and Nxpe3 in microglia, Clu in astrocyte and CD74 in oligodendrocyte. Last, we profiled the bidirectional ligand-receptor interactions at the neighbor cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found GPR37L1_PSAP and GPR37_PSAP were top 2 enriched gene-pairs between microglia and fibroblast or microglia and astrocyte. Together, the establishment of these profiles firstly uncovered scar spatial heterogeneity and lineage trajectory, provide an unbiased view of scar and served as a valuable resource for CNS injury treatment.
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors-the glial scar, triggered by injury and exerting confusing inhibiting or promoting regeneration function. Recent technological advancements in spatial transcriptomics (ST) provide a unique opportunity to decipher all or most genes systematically throughout scar formation, which remains poorly understood. Herein, we firstly constructed tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury (SCI) based on the transcriptomes from 32 samples. Locally, we identified gene expression gradients from leading edge to the core of scar areas that allow for re-understanding of the scar microenvironment, such as neurotransmitter disorder, activation of proinflammatory response, neurotoxic saturated lipids, angiogenesis, obstructing axon extension and extracellular structure re-organization. Additionally, we identified 21 cell types during scar formation and delineated the origin, functional diversity and the possible trajectory between subpopulations of fibroblast, glia and immune cell. Specially, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophage, CD36 and Postn in fibroblast, Plxnb2 and Nxpe3 in microglia, Clu in astrocyte and CD74 in oligodendrocyte. Subsequently, we accurately defined the extent of scar boundary and profiled the bidirectional ligand-receptor interactions at the neighbor cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found GPR37L1_PSAP and GPR37_PSAP were the most significant gene-pairs between microglia, fibroblasts and astrocytes. Last, we quantified the fraction of scar-resident cell and defined four phases of the scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence and scar stationary. Together, the establishment of these profiles firstly uncovered scar spatial heterogeneity and lineage trajectory, provide an unbiased view of scar and served as a valuable resource for the central nervous system (CNS) injury treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.