Derivatives of malachite green, a well-known triphenylmethine dye, have been adapted for third-generation photovoltaic applications as dye-sensitized solar cells (DSSC). The solar cells were developed based on a concentrated Br3−/Br− liquid electrolyte coupled to different trifluoroacetate (TFA−), triflate (TfO−), bromide (Br−) and tetrafluoroborate (BF4−) malachite green salts as dye sensitizers and mesoporous TiO2 anatase as electron collector, and their optoelectronic properties were characterized. The adsorption patterns of such salts at the TiO2 nanoparticle surface were studied by zeta (ζ) potential measurements on colloidal suspensions under neat conditions, and compared to the desorption rates of the dyes when exposed to the DSSC electrolyte. The different affinities of the ionic pairs for the oxide surface and the bulk were found crucial for the stability of the self-assembled monolayer of carboxylic acid-anchored chromophores at the surface, and for the photoconversion efficiency associated therewith. This study aimed at depicting the behavior of the ionic pairs at the surface and gave insights for their physical and chemical stabilization in the DSSC environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.