The Hodgkin-Huxley equations with a slight modification are investigated, in which the inactivation process (h) of sodium channels or the activation process of potassium channels (n) is slowed down. We show that the equations produce a variety of action potential waveforms ranging from a plateau potential, such as in heart muscle cells, to chaotic bursting firings. When h is slowed down--differently from the case of n variable being slow --chaotic bursting oscillations are observed for a wide range of parameter values although both variables cause a decrease in the membrane potential. The underlying nonlinear dynamics of various action potentials are analyzed using bifurcation theory and a so-called slow-fast decomposition analysis. It is shown that a simple topological property of the equilibrium curves of slow and fast subsystems is essential to the production of chaotic oscillations, and this is the cause of the large difference in global firing characteristics between the h-slow and n-slow cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.