We propose a novel method to fabricate three-dimensional magnetic microparts, which can be integrated in functional microfluidic networks and lab-on-a-chip devices, by the combination of two-photon microfabrication and selective electroless plating. In our experiments, magnetic microparts could be successfully fabricated by optimizing various experimental conditions of electroless plating. In addition, energy dispersive X-ray spectrometry (EDS) clarified that iron oxide nanoparticles were deposited onto the polymeric microstructure site-selectively. We also fabricated magnetic microrotors which could smoothly rotate using common laboratory equipment. Since such magnetic microparts can be remotely driven with an external magnetic field, our fabrication process can be applied to functional lab-on-a-chip devices for analytical and biological applications.
Cell-assisted lipotransfer (CAL) is an advanced lipoinjection method that uses autologous lipotransfer with addition of a stromal vascular fraction (SVF) containing adipose-derived stromal stem cells (ASCs). The CAL procedure of manual isolation of cells from fat requires cell processing to be performed in clean environment. To isolate cells from fat without the need for a cell processing center, such as in a procedure in an operation theater, we developed a novel method for processing SVF using a closed cell washing concentration device (CCD) with a hollow fiber membrane module. The CCD consists of a sterilized closed circuit, bags and hollow fiber, semi-automatic device and the device allows removal of >99.97% of collagenase from SVF while maintaining sterility. The number of nucleated cells, ASCs and viability in SVF processed by this method were equivalent to those in SVF processed using conventional manual isolation. Our results suggest that the CCD system is as reliable as manual isolation and may also be useful for CAL. This approach will help in the development of regenerative medicine at clinics without a cell processing center.
In this stud 》 -we propose a method to 飴 bricate three − dimensional ( 3D )magnetic microparts by the combination of two − photon microfabrication and eloctroless plating . In this method , polymeric microparts made by two − photon microfabrication are magnetized by electroless plating .1n experiments , magnetic microparts cou 且 d be successfblly fabricated by modifying various experimental conditions ofelectroless plating . addition , we demonstrated the magnetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.