We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.
We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].
Atoms in high-lying Rydberg states with large values of the principal quantum number n, n ⩾ 300, form a valuable laboratory in which to explore the control and manipulation of quantum states of mesoscopic size using carefully tailored sequences of short electric field pulses whose characteristic times (duration and/or rise/fall times) are less than the classical electron orbital period. Atoms react to such pulse sequences very differently than to short laser or microwave pulses providing the foundation for a number of new approaches to engineering atomic wavefunctions. The remarkable level of control that can be achieved is illustrated with reference to the generation of localized wavepackets in Bohr-like near-circular orbits, and the production of non-dispersive wavepackets under periodic driving and their transport to targeted regions of phase space. The testing of these control schemes, together with their reversibility, through the creation of electric dipole echoes in Stark wavepackets, is also described. New protocols continue to be developed that will allow even tighter control with the promise of new insights into quantum-classical correspondence, information storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime and nonlinear dynamics in driven systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.