Frame structures equipped with steel plate shear walls (SPSWs) have been widely used in high-rise buildings due to their good seismic performance. In this study, the strip model and combined strip model were used to analyze the performance of SPSWs. Furthermore, an improved genetic algorithm (IGA) was established to optimize the steel frame for 5, 10, and 20 stories. For each layer, layout optimization was conducted to determine the best configurations of the SPSWs, and two cases of size optimizations of conventional SPSW configurations in the frame were conducted. Results indicate the following: (i) the total weight of the five-story steel frame of layout optimization to determine the best SPSW configuration was approximately 10% lighter than those of the size optimization of conventional SPSW configurations, and this proportion gap expanded to approximately 15–25% for the 10-story and 20-story steel frames; (ii) the steel frame weight could be significantly reduced if the average percentages of story shear resisted by web plates are increased; and(iii) in the steel frame of layout optimization, the structural elements, especially the plate elements, were better utilized than those of size optimization when their inter-story drift ratios met the specification requirements. These results highlight the prominent performances of some important indicators of the design of an SPSW system with the layout optimized using IGA.
Two types of lateral resistance structural systems, namely unstiffened steel plate shear walls (USPSWs) and stiffened steel plate shear walls (SSPSWs), are typically used in high-rise structures. Numerous experimental and numerical studies have been conducted on the structural performance of SSPSWs. However, few studies have been conducted to investigate the effect of column flexural stiffness on SSPSW systems. In this study, an analysis and numerical investigation of SSPSWs with variable column flexural stiffnesses was performed. The hysteretic performance, secant stiffness reduction and energy dissipation of SSPSWs with four column flexural stiffnesses were investigated. The column flexural stiffness reduction in the USPSWs and SSPSWs did not negatively influence the overall performance of drift ratios up to 2.5%. Moreover, the infill plates of the USPSWs and SSPSWs could achieve the ultimate strengths similar to the theoretical values despite the column not satisfying the minimum flexural stiffness requirements from CSA S16-09 and PEER/ATC72-1, which indicated that these requirements could be conservative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.