Thermal conductivity and phase identification of Mg-RE (Rare-Earth) alloy (Mg-La, Mg-Ce, Mg-Nd, Mg-Sm) in both as-cast and annealed states were investigated. The thermal conductivity was measured by the laser flash method in the composition range of 4 wt.% to 12 wt.% RE and the temperature range of 298 K to 673 K. Results demonstrated that homogenization treatment can increase its thermal conductivity. The thermal conductivity increases with the increasing temperature in two states, which is inconsistent with the pure magnesium, and the thermal conductivity of Mg-RE alloys decreases with the alloy additions. Compared with the atomic radius, valence, and intermetallic compounds, the solid solubility of the above four RE elements in α-Mg plays a vital role in the thermal conductivity of Mg-RE binary alloy. The reduction of thermal conductivity caused by the addition of Nd and Sm, which show observable solid solubility in α-Mg, is significantly greater than the addition of La and Ce with negligible solid solubility in α-Mg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.