The verification efficiency and precision of copper ore grade has a great influence on copper ore mining. At present, the common method for the exploration of reserves often uses chemical analysis and identification, which have high costs, long cycles, and pollution risks but cannot realize the in situ determination of the copper grade. The existing scalar spectrometric techniques generally have limited accuracy. As a vector spectrum, polarization state information is sensitive to mineral particle distribution and composition, which is conducive to high-precision detection. Taking the visible-near infrared parallel polarization reflectance spectrum data and grade data of a copper mine in Xiaoyuan village, Huaining County, Anhui Province, China, as an example, the characteristics of the parallel polarization spectra of the copper mine were analyzed. The spectra were pretreated by first-order derivative transform and wavelet denoising, and the dimensions of wavelet denoising spectra, parallel polarization spectra, and first-order derivative spectra were also reduced by principal component analysis (PCA). Three, four, and eight principal components of the three types of spectra were selected as variables. Four machine learning models, the radial basis function (RBF), support vector machine (SVM), generalized regression neural network (GRNN), and partial least squares regression (PLSR), were selected to establish the PCA parallel polarization reflectance spectrum and copper grade prediction model. The accuracy of the model was evaluated by the determination coefficient (R2) and root mean square error (RMSE). The results show that, for parallel polarization spectra, first-order derivative spectra, and wavelet denoising spectra, the PCA-SVM model has better results, with R2 values of 0.911, 0.942, and 0.953 and RMSE values of 0.022, 0.019, and 0.017, respectively. This method can effectively reduce the redundancy of polarized hyperspectral data, has better model prediction ability, and provides a useful exploration for the grade analysis of hydrothermal copper deposits at meso-low temperatures.
The coupling between optically active substances of algae particles and inorganic suspended solids of water makes the characteristics of reflection spectra of water complex and changeable. This makes modeling and inversion of polarization remote sensing in class II water difficult. In our study, considering the influence of the mixing ratio of algae particles and inorganic suspended solids, the sensor incidence angle, and the solar zenith angle on the polarization reflection spectrum, we analyzed the coupling characteristics of the polarized bidirectional reflectance of particulate matter through control experiments of mixed components of water particles in the laboratory. With Chaohu Lake in China as an example, the polarized reflectance coupling characteristics of water particles was investigated by the water-leaving radiation. The results showed that in the characteristic bands of 570, 675, and 705 nm, the degree of linear polarization (DOLP) was sensitive to the water-leaving radiation of the particles rather than to the reflectance. With the variation of observation angle, the reflection spectra were strongly interfered with by solar flare when the sensor zenith angle was close to 50° on the meridian plane with an azimuth angle of 180°, but DOLP was less affected, while also having a low correlation in the high concentration region. Combined with the coupling characteristics of particles at 675 and 705 nm, the model of DOLP ratio was established by partial least squares regression (PLSR) with a determination coefficient (R2) of 0.91, root mean square error (RMSE) 0.035, and a verification accuracy of 0.959. This shows that the model has better prediction ability for the coupling characteristics of water particles by the polarization reflection spectra and provides good support for mixed spectral unmixing of class II water.
As an independent characteristic of electromagnetic radiation, the polarization of light is sensitive to the scattering and absorption characteristics of the mineral particles. The combination of polarization and infrared absorption spectroscopy is conducive to rapidly and accurately detecting the SiO2 content of metallurgical sandstone deposits. In this study, the 8–14 μm polarized infrared absorption spectra and the grade of the sandstone ore samples were used to analyse the spectral characteristics of the sandstone powder samples. Principal component analysis (PCA) and the successive projection algorithm (SPA) were used to reduce the dimension of the original data, first-order derivative, reciprocal logarithm, and multivariate scattering correction (MSC) data. Then, generalized regression neural network (GRNN), partial least squares regression (PLSR), and convolutional neural network (CNN) were employed to establish a hyperspectral prediction model of SiO2 grade. The results show that the quantitative model by the PCA-CNN algorithm has the better prediction precision for the reciprocal logarithm data, with a coefficient of determination (R2), root mean square error (RMSE), and ratio of performance to interquartile range (RPIQ) of 0.907, 0.023, and 5.11, respectively. This method indicates that the polarized infrared absorption spectra and the PCA-CNN model can provide a more robust and significant spectral interpretation than single infrared spectra, and it is expected to be applied to any high-purity quartz deposit type for in situ and rapid analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.