NGF is involved in the process of autophagy; however, the underlying mechanisms of proNGF/NGF on autophagy in cerebral ischemia-reperfusion (CIR) remain unclear. This study explored the potential pathway of proNGF/NGF in mediating autophagy and apoptosis and thereby contributed to poststroke neurological rehabilitation. In this study, PC12 cell lines and male SD rats were used to simulate CIR; it was found that within 24 h reperfusion, proNGF was the predominant form of Ngf while after 24 h NGF was produced by proNGF transformation. The mature NGF was found to protect neurons against autophagic and apoptotic damage caused by CIR, but proNGF can cause both autophagic and apoptotic neuronal damage. The protective effect of NGF is associated with the activation of the PI3K/Akt/mTOR and ERK pathway and, as well as the change of autophagy-related proteins. On the other hand, proNGF promoted the ERK pathway increasing autophagy and affected the apoptosis-related proteins in vivo and in vitro. These results were also verified in male SD rats with CIR that neurological deficit caused by CIR can be rescued by recombinant and wild-type NGF, and vice-versa by proNGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.