Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Background
Cardamonin, a chalcone isolated from
Alpiniae katsumadai
, has anti-inflammatory and anti-tumor activities. However, the molecular mechanism by which cardamonin inhibits breast cancer progression largely remains to be determined.
Methods
CCK-8 and Hoechst 33258 staining were used to detect cell growth and apoptosis, respectively. HIF-1α driven transcription was measured by luciferase reporter assay. Glucose uptake and lactate content were detected with 2-NBDG and L-Lactate Assay Kit. Cell metabolism assays were performed on Agilent’s Seahorse Bioscience XF96 Extracellular Flux Analyzer. Mitochondrial membrane potential was measured with JC-1 probe. DCFH-DA was used to measure ROS level. Protein expression was detected by western blotting assay. Immunohistochemistry was performed to measure the expression of HIF-1α, LDHA and CD31 in tumor tissues.
Results
Cardamonin inhibited growth of the triple negative breast cancer cell line MDA-MB-231 in vitro and in vivo by suppressing HIF-1α mediated cell metabolism. Cardamonin inhibited the expression of HIF-1α at mRNA and protein levels by repressing the mTOR/p70S6K pathway, and subsequently enhanced mitochondrial oxidative phosphorylation and induced reactive oxygen species (ROS) accumulation. We also found that cardamonin inhibited the Nrf2-dependent ROS scavenging system which further increased intracellular ROS levels. Eventually, accumulation of the intracellular ROS induced apoptosis in breast cancer cells. In addition, cardamonin treatment reduced glucose uptake as well as lactic acid production and efflux, suggesting its function in repressing the glycolysis process.
Conclusions
These results reveal novel function of cardamonin in modulating cancer cell metabolism and suppressing breast cancer progression, and suggest its potential for breast cancer treatment.
Electronic supplementary material
The online version of this article (10.1186/s13046-019-1351-4) contains supplementary material, which is available to authorized users.
Abstract. Breast cancer, the leading cause of cancer-related mortality worldwide in females, has high metastastic and recurrence rates. The aim of the present study was to evaluate the anti-metastatic and anticancer in situ effect of berberine hydrochloride (BER) in MDA-MB-231 cells. BER dose-dependently inhibited proliferation and the IL-8 secretion of MDA-MB-231 cells. Additional experiments revealed that the inactivation of PI3K, JAK2, NF-κB and AP-1 by BER contributed to the decreased IL-8 secretion. BER abrogated cell invasion induced by IL-8 accompanied with the downregulation of the gene expression of MMP-2, EGF, E-cadherin, bFGF and fibronectin.In addition, BER reduced cell motility but induced G2/M arrest and cell apoptosis in an IL-8-independent manner. BER modulated multiple signaling pathway molecules involved in the regulation of cell apoptosis, including activation of p38 MAPK and JNK and deactivation of JAK2, p85 PI3K, Akt and NF-κB. The enhanced cell apoptosis induced by BER was eliminated by inhibitors of p38 MAPK and JNK but was strengthened by activator of p38 MAPK. Thus, BER inhibited cell metastasis partly through the IL-8 mediated pathway while it induced G2/M arrest and promoted cell apoptosis through the IL-8 independent pathway. Apoptosis induced by BER was mediated by crosstalks of various pathways including activation of p38 MAPK and JNK pathways and inactivation of JAK2/ PI3K/NF-κB/AP-1 pathways. The results suggested that BER may be an efficient and safe drug candidate for treating highly metastatic breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.