In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets.
ObjectivesTo investigate the capability of computed-tomography (CT) radiomic features to predict the therapeutic response of Esophageal Carcinoma (EC) to chemoradiotherapy (CRT).MethodsPretreatment contrast-enhanced CT images of 49 EC patients (33 responders, 16 nonresponders) who received with CRT were retrospectively analyzed. The region of tumor was contoured by two radiologists. A total of 214 features were extracted from the tumor region. Kruskal-Wallis test and receiver operating characteristic (ROC) analysis were performed to evaluate the capability of each feature on treatment response classification. Support vector machine (SVM) and artificial neural network (ANN) algorithms were used to build models for prediction of the treatment response. The statistical difference between the performances of the models was assessed using McNemar’s test.ResultsRadiomic-based classification showed significance in differentiating responders from nonresponders. Five features were found to discriminate nonresponders from responders (AUCs from 0.686 to 0.727). Considering these features, two features (Histogram2D_skewness: P = 0.015. Histogram2D_kurtosis: P = 0.039) were significant for differentiating SDs (stable disease) from PRs (partial response) and one feature (Histogram2D_skewness: P = 0.027) for differentiating SDs from CRs (complete response). Both classifiers showed potential in predicting the treatment response with higher accuracy (ANN: 0.972, SVM: 0.891). No statistically significant difference was observed in the performance of the two classifiers (P = 0.250).ConclusionsCT-based radiomic features can be used as imaging biomarkers to predict tumor response to CRT in EC patients.
Over the past decade, with the development of machine learning, discrete wavelet transform (DWT) has been widely used in computer-aided epileptic electroencephalography (EEG) signal analysis as a powerful time-frequency tool. But some important problems have not yet been benefitted from DWT, including epileptic focus localization, a key task in epilepsy diagnosis and treatment. Additionally, the parameters and settings for DWT are chosen empirically or arbitrarily in previous work. In this work, we propose a framework to use DWT and support vector machine (SVM) for epileptic focus localization problem based on EEG. To provide a guideline in selecting the best settings for DWT, we decompose the EEG segments in seven commonly used wavelet families to their maximum theoretical levels. The wavelet and its level of decomposition providing the highest accuracy in each wavelet family are then used in a grid search for obtaining the optimal frequency bands and wavelet coefficient features. Our approach achieves promising performance on two widely-recognized intrancranial EEG datasets that are also seizure-free, with an accuracy of 83.07% on the Bern-Barcelona dataset and an accuracy of 88.00% on the UBonn dataset. Compared with existing DWT-based approaches in epileptic EEG analysis, the proposed approach leads to more accurate and robust results. A guideline for DWT parameter setting is provided at the end of the paper.
Deep gray matter structures are associated with memory and other important functions that are impaired in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). However, systematic characterization of the subregional atrophy and deformations in these structures in AD and MCI still need more investigations. In this article, we combined complex volumetry- and vertex-based analysis to investigate the pattern of subregional structural alterations in deep gray matter structures and its association with global clinical scores in AD (n = 30) and MCI patients (n = 30), compared to normal controls (NCs, n = 30). Among all seven pairs of structures, the bilateral hippocampi and nucleus accumbens showed significant atrophy in AD compared with NCs (p < 0.05). But only the subregional atrophy in the dorsal–medial part of the left hippocampus, the ventral part of right hippocampus, and the left nucleus accumbens, the posterior part of the right nucleus accumbens correlated with the worse clinical scores of MMSE and MOCA (p < 0.05). Furthermore, the medial–ventral part of right thalamus significantly shrank and correlated with clinical scores without decreasing in its whole volume (p > 0.05). In conclusion, the atrophy of these four subregions in bilateral hippocampi and nucleus accumbens was associated with cognitive impairment of patients, which might be potential target regions of treatment in AD. The surface analysis could provide additional information to volume comparison in finding the early pathological progress in deep gray matter structures.
Pretreatment radiomic analysis using CECT can potentially provide important information regarding the therapeutic response to PLDRT for GCACM, improving risk stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.