The Forkhead Box M1 (FOXM1) transcription factor plays a crucial role in regulating expression of cell cycle genes which are essentially involved in cell proliferation, differentiation and transformation. Recent studies have reported that aberrant expression of FOXM1 in a variety of human cancers is associated with their aggressive behaviour. However, the functional significance of FOXM1 in human cervical cancer is not known. We have shown that FOXM1 was significantly over-expressed in cervical squamous cell carcinoma (SCC) compared to normal cervical epithelium immunohistochemically (p < 0.001). In addition, intratumoural FOXM1 positivity was increased in cervical intraepithelial neoplasia (CIN) and carcinoma, compared with that in normal epithelium, indicating that FOXM1 is involved in tumour progression. Indeed, this is supported by clinicopathological analysis that the over-expression of FOXM1 was significantly associated with tumour late stage (p = 0.012) and cell proliferation marker, Ki67 (p < 0.001). Functionally, enforced expression of FOXM1c in FOXM1-deficient cervical cancer cells (C33A) remarkably enhanced cell proliferation and anchorage-independent growth ability. Conversely, depletion of FOXM1 by RNA interference in FOXM1-over-expressing cervical cancer cells (SiHa) caused significant inhibition on cell proliferation and anchorage-independent growth ability on soft agar. This inhibitory phenomenon was associated with the reduced expressions of cyclin B1, cyclinD1 and cdc25B but increased expression of p27(Kip1) and p21(Cip1). Our findings suggest a role for FOXM1 in the development and pathogenesis of human cervical SCC.
Background and aim:Several studies have identified that obesity and being overweight can increase the risk of developing myocardial infarction (MI). However, the predictive value of the central obesity index, that is, the waist-hip ratio (WHR), regarding MI risk remains unclear. This study aimed to provide a systematic review and meta-analysis of WHR as a predictor of MI incidence.Methods:This study used relevant keywords and MeSH terms to identify studies of MI risk and WHR from PubMed, Web of Science, Embase, and Cochrane databases in November 2017.Results:We conducted a meta-analysis of 12 case-control studies in 14 eligible trials and further explored whether the predictive value of WHR on MI risk varies according to sex. The results showed that a high WHR increased MI risk (pooled odds ratio [OR] 2.62, 95% confidence interval [CI] 2.02–3.39, P < 0.00001) and that elevated WHR is more strongly predictive of MI in women than in men (pooled OR 4.63, 95% CI 3.28–6.53 in women; pooled OR 2.71, 95% CI 2.15–3.41 in men).Conclusions:MI is significantly associated with increased WHR, with a stronger association among women.
Increasing evidences suggest that intestinal microbiota balance closely correlated with host's health status could affected by external environment. Integrated crayfish-rice cultivation model is a highly efficient artificial ecosystem widely practiced in subtropical China. Less information is available to estimate the influence response to the micro-ecology of crayfish intestine and so as to influence the biological processes. Thus, 16S rRNA high-throughput sequencing approach was employed to investigate the composition diversity and functions of bacterial community in the intestines of Procambarus clarkii farmed within this model. Results exhibited the highly diversity of microflora with dominant phyla Actinobacteria, Proteobacteria, Tenericutes, Firmicutes and Bacteroidetes. The genera of Candidatus Bacilloplasma and Ornithinibacter were presented as predominant population much exceeds in richness comparing to that of other genus. Despite the highly diversity in the bacterial community, the predicted functions indicated relative consistent in biological processing pathway. Collectively, significant richness of genes was observed involved in amino acid and carbohydrate metabolism and membrane transport processing. This study would contribute to the understanding of the impact of growth conditions on host-microbiota relation especially in aquatic animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.