To achieve fast and accurate adjustment of robotic fish, this paper proposes state prediction model based on the extreme learning machine optimized by particle swarm algorithm. The proposed model can select desirable actions for robotic fish according to precisely predicted states, "adjusting position" or "pushing ball" defined herein. Specifically, the extreme learning machine (ELM) is leveraged to predict the state of robotic fish, from the observations of current surrounding environment. As the outputs in ELM are varying with the randomly initialized parameters, particle swarm optimization (PSO) algorithm further improves the accuracy and robustness of the ELM by optimizing initial parameters. The empirical results on URWPGSim2D simulation platform indicate that the robotic fish tends to carry out appropriate actions using the state prediction model so that we can complete the game efficiently. It proves that the proposed model can make best use of the real-time information of robotic fish and water polo and derive fulfilling action strategy in various scenarios, which meet the requirements of motion control for robotic fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.