This study analyzes data obtained by intensive observation during a pilot field campaign of the Years of the Maritime Continent Project (Pre-YMC) to investigate the diurnal cycle of precipitation in the western coastal area of Sumatra Island. The diurnal cycle during the campaign period (November–December 2015) is found to have a number of similarities with statistical behavior of the diurnal cycle as revealed by previous studies, such as afternoon precipitation over land, nighttime offshore migration of the precipitation zone, and dependency on Madden–Julian oscillation (MJO) phase. Composite analyses of radiosonde soundings from the Research Vessel (R/V) Mirai, deployed about 50 km off the coast, demonstrate that the lower free troposphere starts cooling in late afternoon (a couple of hours earlier than the cooling in the boundary layer), making the lower troposphere more unstable just before precipitation starts to increase. As the nighttime offshore precipitation tends to be more vigorous on days when the cooling in the lower free troposphere is larger, it is possible that the destabilization due to the cooling contributes to the offshore migration of the precipitation zone via enhancement of convective activity. Comparison of potential temperature and water vapor mixing ratio tendencies suggests that this cooling is substantially due to vertical advection by an ascent motion, which is possibly a component of shallow gravity waves. These results support the idea that gravity waves emanating from convective systems over land play a significant role in the offshore migration of the precipitation zone.
This paper describes a diurnal cycle in systematic cloud system migration observed with the GMS IR1 sensor over Sumatera (approximately 1,500 km in length) from May 2001 to April 2002. Convective clouds developed over mountainous areas in the afternoon, and migrated westward and/or eastward for several hundred kilometers (@500 km) from midnight to morning. Westward migration occurred in almost every month except August over southernmost Sumatera Island. Eastward migration occurred when lower-tropospheric winds were westerly and/or when super cloud clusters moved eastward along the Intertropical Convergence Zone (ITCZ), which moves northward and southward with an annual cycle.
In the search for 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine (HEPT) derivatives, we have found several 5-ethyl-6-(phenylthio)uracil analogues to be highly potent and selective inhibitors of human immunodeficiency virus (HIV) type 1.
Diurnal and seasonal variations of raindrop size distribution (DSD) at Gadanki (GD), Singapore (SG) and Kototabang (KT) are studied to elucidate characteristics of DSD in the Asian monsoon region. It is found that DSDs are affected by diurnal convective cycles and seasonal variations in precipitation characteristics. GD has the most significant seasonal variation in DSD. Clear difference in rainfall characteristics between the Southwest and Northeast monsoon seasons is considered to be the main cause of such clear seasonal variation. KT has the most significant diurnal variation of DSD, which is probably caused by the fact that KT is greatly affected by ocean-land contrast and mountain effects to generate local convection in the afternoon. SG has less diurnal and seasonal variations compared with the other two locations, which is related to the fact that SG is affected both by land and oceanic rainfall. Z-R relations apCorresponding author: Toshiaki Kozu, Faculty of Science and Engineering, Shimane University, Matsue, 690-8504, Japan. E-mail: kozu@ecs.shimane-u.ac.jp ( 2006, Meteorological Society of Japan plicable to radar rainfall measurement in these areas are derived. It is shown that the use of the Marshall-Palmer Z-R relation (Z ¼ 200R 1:6 ) gives bias errors of about 1.5 dB or less in rain rate estimation except for the northeast monsoon season in GD, for 12@18 local time during pre-southwest monsoon season in GD, and for 06@12 local time during some monsoon seasons in KT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.