A male pronucleus migrates toward the center of an egg to reach the female pronucleus for zygote formation. This migration depends on microtubules growing from two centrosomes associated with the male pronucleus. Two mechanisms were previously proposed for this migration: a "pushing mechanism," which uses the pushing force resulting from microtubule polymerization, and a "pulling mechanism," which uses the length-dependent pulling force generated by minus-end-directed motors anchored throughout the cytoplasm. We combined two computer-assisted analyses to examine the relative contribution of these mechanisms to male pronuclear migration. Computer simulation revealed an intrinsic difference in migration behavior of the male pronucleus between the pushing and pulling mechanisms. In vivo measurements using image processing showed that the actual migration behavior in Caenorhabditis elegans confirms the pulling mechanism. A male pronucleus having a single centrosome migrated toward the single aster. We propose that the pulling mechanism is the primary mechanism for male pronuclear migration.
Centrosome positioning is actively regulated by forces acting on microtubules radiating from the centrosomes. Two mechanisms, center-directed and polarized cortical pulling, are major contributors to the successive centering and posteriorly displacing migrations of the centrosomes in single-cell–stage Caenorhabditis elegans. In this study, we analyze the spatial distribution of the forces acting on the centrosomes to examine the mechanism that switches centrosomal migration from centering to displacing. We clarify the spatial distribution of the forces using image processing to measure the micrometer-scale movements of the centrosomes. The changes in distribution show that polarized cortical pulling functions during centering migration. The polarized cortical pulling force directed posteriorly is repressed predominantly in the lateral regions during centering migration and is derepressed during posteriorly displacing migration. Computer simulations show that this local repression of cortical pulling force is sufficient for switching between centering and displacing migration. Local regulation of cortical pulling might be a mechanism conserved for the precise temporal regulation of centrosomal dynamic positioning.
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.
Bioimaging data have significant potential for reuse, but unlocking this potential requires systematic archiving of data and metadata in public databases. We propose draft metadata guidelines to begin addressing the needs of diverse communities within light and electron microscopy. We hope this publication and the proposed Recommended Metadata for Biological Images (REMBI) will stimulate discussions about their implementation and future extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.