These data suggest that synchronized discharges involving the complete anterior-posterior axis of the hippocampal/parahippocampal (H/P) formation underlie the spread of epileptiform discharges outside the H/P structures and, therefore, for the generation of epileptic seizures originating in the H/P structures. This conclusion is supported by the following observations. 1) Hippocampal spikes are consistently synchronized in the whole hippocampal structures, with a fixed delay between the different hippocampal areas. 2) One or two transections between the head and body of the hippocampal formation are sufficient to abolish hippocampal spikes that are synchronized along the anterior-posterior axis of the hippocampus. 3) Treatment with MHT leads to seizure freedom in patients with H/P epilepsy.
Summary Purpose: To examine whether surgery is indicated for posterior cortex epilepsy secondary to ulegyria. Patients and methods: Ten patients who underwent surgery for posterior cortex epilepsy with ulegyria and were followed for more than 2 years were included. All patients underwent comprehensive presurgical evaluations. Five patients underwent intracranial electroencephalography (EEG) studies. The posterior cortex including the magnetic resonance imaging (MRI) lesion was resected in all patients. Postoperative follow‐up period was 2–12 (mean 6) years. Results: Nine patients had a history of perinatal distress including asphyxia and prolonged labor. Age at seizure onset was 5–11 years, except one patient. Three patients had visual field defects preoperatively. Ulegyria was unilateral in four patients and bilateral but unilateral‐predominant in six patients. In most of the cases, the lesions were in the posterior cerebral artery area or the watershed area between middle cerebral and posterior cerebral arteries. In four of five patients who underwent intracranial EEG, seizure onset zones extended outside the lesions. Postoperative seizure outcome was Engel's class I in seven cases, and class III in three cases. Three of four patients whose seizure onset zones were not completely resected achieved class I outcome. Four of six patients with bilateral lesions achieved class I outcome. Conclusion: Ulegyria due to perinatal distress is considered to be a major cause of posterior cortex epilepsy. Long‐term postoperative seizure outcome is favorable. Resection of MRI lesion is important for seizure relief. Bilateral lesions should not be excluded from surgical indication. The usefulness of intracranial EEG may be limited.
We attempted to clarify functional interhemispheric connections of motor cortex (MC) by investigating cortico-cortical evoked potentials from human brains in vivo. Three patients with intractable epilepsy who underwent invasive EEG monitoring with subdural electrodes as presurgical evaluation were studied. Electric pulse stimuli were delivered in a bipolar fashion to two adjacent electrodes on and around MC. Cortico-cortical evoked potentials were recorded by averaging electrocorticograms from the contralateral hemisphere. An initial positive triphasic or an initial negative biphasic wave was recorded when the contralateral MCs were stimulated. When the non-MC electrodes were stimulated, no response was recorded. The latencies ranged from 9.2 to 23.8 ms for the initial positive peak, and 25.4 to 39.4 ms for the initial or the second negative peak. The cortico-cortical evoked potentials responses were maximal around the homonymous electrodes with the stimulated electrodes. Our results directly demonstrate the presence of the functional interhemispheric connections originating in MC. The interhemispheric transit time is indicated. The homotopic distribution of the responses indicates that motor coordination of the bilateral bodies is, at least partially, controlled within MC.
The aims of this study were to record high-frequency oscillations (HFOs) associated with somatosensory-evoked potentials from subdural electrodes and to investigate their generators and clinical significance. Six patients who underwent long-term subdural electrode monitoring were studied. Somatosensory-evoked potentials were recorded directly from the subdural electrode after stimulation of the median nerve. Bandpass filter was 10 to 10,000 Hz for conventional somatosensory-evoked potential and 500 to 10,000 Hz for HFO. Three types of HFO were recorded. The first component was early HFO (407-926 Hz), which occurred before N20 peak. The second component was late HFO (408-909 Hz), which occurred after N20 peak. In addition, a novel component was recorded with a range from 1,235 to 2,632 Hz, and this component was termed very HFO. Early and late HFOs were recorded from relatively wide areas centering around the primary motor and primary sensory areas, whereas very HFO was localized around the primary sensory areas. In this study, at least three components of HFO could be identified. Only very HFO was localized around primary sensory areas, suggesting a possibility that very HFO may provide an effective method of identifying the central sulcus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.