The classical maximum entropy clustering (MEC) algorithm usually cannot achieve satisfactory results in the situations where the data is insufficient, incomplete, or distorted. To address this problem, inspired by transfer learning, the specific cluster prototypes and fuzzy memberships jointly leveraged (CPM-JL) framework for cross-domain MEC (CDMEC) is firstly devised in this paper, and then the corresponding algorithm referred to as CPM-JL-CDMEC and the dedicated validity index named fuzzy memberships-based cross-domain difference measurement (FM-CDDM) are concurrently proposed. In general, the contributions of this paper are fourfold: 1) benefiting from the delicate CPM-JL framework, CPM-JL-CDMEC features high-clustering effectiveness and robustness even in some complex data situations; 2) the reliability of FM-CDDM has been demonstrated to be close to well-established external criteria, e.g., normalized mutual information and rand index, and it does not require additional label information. Hence, using FM-CDDM as a dedicated validity index significantly enhances the applicability of CPM-JL-CDMEC under realistic scenarios; 3) the performance of CPM-JL-CDMEC is generally better than, at least equal to, that of MEC because CPM-JL-CDMEC can degenerate into the standard MEC algorithm after adopting the proper parameters, and which avoids the issue of negative transfer; and 4) in order to maximize privacy protection, CPM-JL-CDMEC employs the known cluster prototypes and their associated fuzzy memberships rather than the raw data in the source domain as prior knowledge. The experimental studies thoroughly evaluated and demonstrated these advantages on both synthetic and real-life transfer datasets.
Conventional, soft-partition clustering approaches, such as fuzzy c-means (FCM), maximum entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually incompetent in those situations where the data are quite insufficient or much polluted by underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II knowledge-transfer-oriented c-means (TI-KT-CM and TII-KT-CM), are subsequently presented, respectively. The primary contributions of our work are four-fold: (1) The delicate QWGSD-FC model inherits the most merits of FCM, MEC and FC-QR. With the weight factors in the form of quadratic memberships, similar to FCM, it can more effectively calculate the total intra-cluster deviation than the linear form recruited in MEC and FC-QR. Meanwhile, via Gini-Simpson diversity index, like Shannon entropy in MEC, and equivalent to the quadratic regularization in FC-QR, QWGSD-FC is prone to achieving the unbiased probability assignments, (2) owing to the reference knowledge from the source domain, both TI-KT-CM and TII-KT-CM demonstrate high clustering effectiveness as well as strong parameter robustness in the target domain, (3) TI-KT-CM refers merely to the historical cluster centroids, whereas TII-KT-CM simultaneously uses the historical cluster centroids and their associated fuzzy memberships as the reference. This indicates that TII-KT-CM features more comprehensive knowledge learning capability than TI-KT-CM and TII-KT-CM consequently exhibits more perfect cross-domain clustering performance and (4) neither the historical cluster centroids nor the historical cluster centroid based fuzzy memberships involved in TI-KT-CM or TII-KT-CM can be inversely mapped into the raw data. This means that both TI-KT-CM and TII-KT-CM can work without disclosing the original data in the source domain, i.e. they are of good privacy protection for the source domain. In addition, the convergence analyses regarding both TI-KT-CM and TII-KT-CM are conducted in our research. The experimental studies thoroughly evaluated and demonstrated our contributions on both synthetic and real-life data scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.