A new spikemoss species, Selaginella wuyishanensis, is described and illustrated based on materials collected from Fujian Province, East China. The new species can be distinguished from S. lutchuensis Koidzumi and S. albociliata P. S. Wang by its leaves with extremely long cilia (up to 8 mm) and distinctly white margins, ovate ventral sporophylls, and sporophyll-pteryx completely inverted on dorsal sporophylls. In the present work, a molecular phylogeny, taxonomic description, distribution information, line drawing, and photographs of this new species are presented. A morphological comparison is also given to distinguish it from morphologically similar species in Selaginella sect. Tetragonostachyae (Hook. & Grev.) Hieron. & Sadeb.
Nitrogen (N) and phosphorus (P) are key elements essential for plant growth and development. Due to fertilizer application, rapid urbanization, and fossil fuel combustion, nitrogen deposition has reached relatively high levels in China. However, there is still uncertainty regarding the response of N:P stoichiometry in plants and soil to N deposition across different ecosystems. Therefore, a meta-analysis was conducted using 845 observations from 75 studies to evaluate the response of plant and soil N and P concentrations and N to P ratios across various ecosystems to N addition. The analysis revealed that N concentration and N:P stoichiometry in plants and soil increased under N addition, while P concentration in plants and soil decreased on average. Furthermore, the magnitude of these responses was related to the N input rate and experimental duration. Finally, the effects of N addition on N concentration, P concentration, and N:P in terrestrial ecosystems would alter their allocation patterns, depending on relevant climate factors such as mean annual temperature and mean annual precipitation. This study highlights the ecological impact of N addition on the biogeochemical cycling of major elements (N and P) in terrestrial ecosystems in China. These findings are necessary for improving our understanding of the characteristics of plant ecological stoichiometry and helping to plan measures for increasing N deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.