It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the Kα triplets of various He-like ions, but also good fractions of the Lyα transitions of C vi (∼ 87%), O viii and N vii ( 50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30Å band originates in the CX. We infer an ion incident rate of 3 × 10 51 s −1 undergoing CX at the hot and cool gas interface, and an effective area of the interface as ∼ 2 × 10 45 cm 2 that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.
Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in γ-ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2°on the sky: RX J1713.7−3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and γ-ray spectra are quite different, offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.
Diffuse soft X-ray line emission is commonly used to trace the thermal and chemical properties of the hot interstellar medium, as well as its content, in nearby galaxies. Although resonant line scattering complicates the interpretation of the emission, it also offers an opportunity to measure the kinematics of the medium. We have implemented a direct Monte Carlo simulation scheme that enables us to account for resonant scattering effect in the medium, in principle, with arbitrary spatial, thermal, chemical, and kinematic distributions. Here we apply this scheme via dimensionless calculation to an isothermal, chemically uniform, and spherically symmetric medium with a radial density distribution characterized by a β-model. This application simultaneously account for both optical depth-dependent spatial distortion and intensity change of the resonant line emission due to the scattering, consistent with previous calculations. We further apply the modeling scheme to the OVII and OVIII emission line complex observed in the XMM-Newton RGS spectrum of the M31 bulge. This modeling, though with various limitations due to its simplicity, shows that the resonant scattering could indeed account for much of the spatial distortion of the emission, as well as the relative strengths of the lines, especially the large forbidden to resonant line ratio of the OVII Heα triplet. We estimate the isotropic turbulence Mach number of the medium in M31 as ∼ 0.17 for the first time and the line-emitting gas temperature as ∼ 2.3 × 10 6 K. We conclude that the resonant scattering may in general play an important role in shaping the soft X-ray spectra of diffuse hot gas in normal galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.