Nowadays, inorganic CsPbBr 3 perovskite is emerging as a promising candidate as a light-absorbing layer in photovoltaic devices due to its excellent photoelectric property and superior stability under humidity and thermal attacks in comparison with organic cation-based hybrid perovskites. However, the impure perovskite phase and severe interfacial charge recombination have limited the further improvement of device performance. In this work, a vapor-assisted solution technique was introduced to prepare a high-purity CsPbBr 3 film in a perovskite solar cell (PSC). To further reduce the electron−hole recombination and enhance charge extraction, we introduced the novel intermediate energy level of manganese sulfide (MnS) as a hole transport layer in CsPbBr 3 PSC. The as-optimized CsPbBr 3 PSC based on all-inorganic transport layers delivers a power conversion efficiency (PCE) of 10.45% in comparison with 8.16% for the device free of an intermediate layer, which is one of the highest PCEs achieved among the CsPbBr 3 -based PSCs to date. Moreover, the optimized device retained 80% PCE of its initial efficiency over 90 days under 80% relative humidity at 85 °C, indicating an excellent environmental tolerance to boost the commercial application of low-cost, efficient, and stable all-inorganic PSCs.
For a typical perovskite solar cell (PKSC), the electron transport layer (ETL) has a great effect on device performance and stability. Herein, we manifest that low-temperature solution-processed ZnSe can be used as a potential ETL for PKSCs. Our optimized device with ZnSe ETL has achieved a high power conversion efficiency (PCE) of 17.78% with negligible hysteresis, compared with the TiO based cell (13.76%). This enhanced photovoltaic performance is attributed to the suitable band alignment, high electron mobility, and reduced charge accumulation at the interface of ETL/perovskite. Encouraging results were obtained when the thin layer of ZnSe cooperated with TiO. It shows that the device based on the TiO/ZnSe ETL with cascade conduction band level can effectively reduce the interfacial charge recombination and promote carrier transfer with the champion PCE of 18.57%. In addition, the ZnSe-based device exhibits a better photostability than the control device due to the greater ultraviolet (UV) light harvesting of the ZnSe layer, which can efficiently prevent the perovskite film from intense UV-light exposure to avoid associated degradation. Consequently, our results present that a promising ETL can be a potential candidate of the n-type ETL for commercialization of efficient and photostable PKSCs.
Both circular RNAs (circRNAs) and cancer stem cells (CSCs) are separately known to be involved in cancer, but their interaction remains unclear. Here, the regulation of hepatocellular CSC self‐renewal is discovered by a circRNA, circ‐MALAT1, which is produced by back‐splicing of a long noncoding RNA, MALAT1. Circ‐MALAT1 is highly expressed in CSCs from clinical hepatocellular carcinoma samples under the mediation of an RNA‐binding protein, AUF1. Surprisingly, circMALAT1 functions as a brake in ribosomes to retard PAX5 mRNA translation and promote CSCs' self‐renewal by forming an unprecedented ternary complex with both ribosomes and mRNA. The discovered braking mechanism of a circRNA, termed mRNA braking, along with its more traditional role of miRNA sponging, uncovers a dual‐faceted pattern of circRNA‐mediated post‐transcriptional regulation for maintaining a specific cell state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.