No abstract
Heavy oil reservoirs are often characterized by high viscosity and poor mobility, which is more complex with the presence of bottom water. The conventional vertical well development method has low oil recovery efficiency and limited controlled reserves of a single well. In addition, water cut can increase dramatically when the edge-bottom water breaks through. Horizontal well and CO2 huff-n-puff is an effective alternative development model for heavy oil reservoirs. This development method makes efficient use of CO2 and accords with the “Carbon Capture, Utilization, and Storage (CCUS)”. The horizontal well can increase the drainage area. The dissolution of CO2 improves the mobility of crude oil and increases formation energy. In this paper, we established numerical simulation models based on the Liuguanzhuang oilfield in Dagang. The characteristics and producing rules of the horizontal well and CO2 huff-n-puff development in the heavy oil reservoir were studied. The results show that the production characteristics of horizontal well and CO2 huff-n-puff were similar to Steam-Assisted Gravity Drainage (SAGD). CO2 forms a viscosity reduction area above the horizontal well and the heavy oil flows into the wellbore due to gravity after viscosity reduction. The CO2 huff-n-puff can effectively enhance the production area of horizontal wells compared with the depletion development. However, the improvement in the production area gradually decreased as CO2 huff-n-puff cycles continued. There was a boundary of production area against the horizontal well, with the main production of heavy oil occurring at the upper and either end of the horizontal well. The CO2 huff-n-puff has a restraining effect on the edge-bottom water, which is confirmed via the proposed theoretical model.
The biolithite reservoir has a strong heterogeneity and complex pore structure, and the changing trend of formation resistivity is complicated during the waterflood development process. In the logging interpretation of a water-flooded layer, mixed-formation water resistivity is a critical parameter and its accurate calculation heavily influences the evaluation of logging water saturation. The commonly used mixed liquid resistivity models have not taken into account the contribution of irreducible clay water and, thus, they are not suitable for biolithite reservoirs with high shale contents. In this paper, a new 3D digital core was constructed based on CT scanning, and a progressive ion exchange model of the mixed-formation water compatible with the biolithite reservoir put forward. Compared with experimental data from core water flooding, the progressive ion exchange model conforms to the resistivity change law of biolithite reservoirs. Through numerical simulation and analysis of the resistivity of biolithite reservoir, it is concluded that the salinity of injected water and the formation water saturation are the main factors affecting the resistivity characteristics of water-flooded layer. In terms of the interpretation of the water-flooded layer, the water saturation was calculated using the progressive ion exchange model through finite element modelling of formation resistivity. The particular mechanism of water flooding and changing law of rock electrical properties during reservoir water injection development are presented, which provide a new reliable basis for optimization of the biolithite reservoir development plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.