When the model fitting of sorption kinetics data was performed using linearized pseudosecond-order rate equations based on constant Q e corresponding to equilibrium sorption, the instantaneous driving force for sorption was underestimated, resulting in an erroneous overestimation of the rate constant. To resolve the issue, a rectification of the model fitting was proposed by accounting for the concentration dependence of Q e in the model equation based on the fact that Q e in the equation represents the sorption capacity at that instant as sorption proceeded with time. The rectified approach was validated with experimental data for various sorption systems reported in the literature. It was shown that the rectification yielded true sorption rate constant that characterizes the relationship between sorption rate and solute concentration, thereby resolving the issues associated with the original approach where the specific rate constant was found to depend on solute concentration and sorption time. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.