Lipopolysaccharides extracted from Campylobacter jejuni serostrains (serotype reference strains) for serotypes 0:4 and 0:19 were found to have core oligosaccharides with terminal structures resembling human gangliosides GM, and GD1a. High-molecular-weight molecules that reflected the presence of 0 chains were shown in immunoblots to be immunologically specific for each serostrain. The 0:19 antiserum also reacted strongly with core oligosaccharides of two isolates from patients with Guillain-Barre syndrome (GBS), but the banding patterns and molecular structures were different from those of the 0:19 serostrain. A neuraminobiose disaccharide unit is attached to the terminal Gal residue in one isolate, and the other isolate lacked terminal N-acetyl glucosamine and galactose with attached sialic acid so that the sialic acid residues were present in a neuraminobiose unit linked to the only remaining galactose. Analysis of the high-Mr lipopolysaccharides of the 0:19 serostrain and the two isolates from GBS patients revealed the presence of a hyaluronic acid-like polymer with disaccharide-repeating units consisting of P-D-glucuronic acid amidated with 2-amino-2-deoxyglycerol and N-acetyl glucosamine. The results confirm a potential role for the core oligosaccharides in the etiology of GBS but also suggest that the 0-chain polysaccharide may be a contributing factor.
We applied a molecular typing approach for Helicobacter pylori that uses restriction fragment length polymorphism (RFLP) analyses of an 820-bp PCR-amplified portion of the ureC gene in H. pylori. The PCR products were digested with restriction enzyme HhaI, MboI, or MseI, and the fragments generated were analyzed by agarose electrophoresis. Among 25 independent clinical isolates, each showed a different pattern when a combination of the three RFLP patterns was used. Using this method, we studied isolates from the antrum or the body of the stomach of 14 patients before and after antibiotic therapy. Before treatment, successful isolation of H. pylori from the two sites of the stomach was possible for 12 of the 14 patients. For 10 of these 12 patients, each pair of isolates had identical RFLP profiles. For the other two patients (16.7%), however, isolates from the antrum and the body of the stomach had different RFLP profiles. Treatment was successful for 6 of the 14 patients; of the 8 patients with treatment failures, 5 had identical isolate pairs. In each case, the isolates found posttreatment were the same as the pretreatment isolates. For one of the patients who was colonized with two different isolates pretreatment, one of the isolates was identified at both sites after unsuccessful treatment. We also studied six long-term follow-up patients who had sequential biopsies at intervals of up to 5 months. Each follow-up isolate from each patient had the same RFLP profile as the initial isolate. This typing method provides a reliable and reproducible typing scheme for the study of H. pylori infections and indicates that infection with more than one H. pylori isolate is not rare.
Campylobacterfetus strains may be of serotype A or B, a property associated with lipopolysaccharide (LPS) structure. Wild-type C. fetus strains contain surface array proteins (S-layer proteins) that may be extracted in water and that are critical for virulence. To explore the relationship of S-layer proteins to other surface components, we reattached S-layer proteins onto S-template cells generated by spontaneous mutation or by serial extractions of S' cells with water. Crystalline surface layers have been observed as the outermost component of the bacterial cell envelopes in numerous gram-positive and gram-negative species (38) and are composed of protein subunits assembled over the cell surface into two-dimensional arrays with hexagonal (p6), square (p4), or oblique (p2) symmetry (36). For the majority of bacteria, the surface layer is formed from a single species of protein, known as a surface array protein (S-layer protein), which is acidic and generally hydrophobic (36,38). In gram-negative bacteria, the constituent subunits of most S-layers interact with each other and with the underlying outer membrane components (3,35,37,40), such as outer membrane proteins in an Acinetobacter sp. (41), lipid-lipopolysaccharide (LPS) in Spirillum serpens (11), and LPS in Aeromonas salmonicida (2, 22), and many S-layers require divalent cations for assembly (10,37,40).
Campylobacter fetus utilizes paracrystalline surface (S-) layer proteins that confer complement resistance and that undergo antigenic variation to facilitate persistent mucosal colonization in ungulates. C. fetus possesses multiple homologues of sapA, each of which encode full-length S-layer proteins. Disruption of sapA by a gene targeting method (insertion of kanamycin (km) resistance) caused the loss of C. fetus cells bearing full-length S-layer proteins and their replacement by cells bearing a 50 kDa truncated protein that was not exported to the cell surface. After incubation of the mutants with serum, the survival rate was approximately 2 x 10(-2). Immunoblots of survivors showed that phenotypic reversion involving high-level production of full-length (98, 127 or 149 kDa) S-layer proteins had occurred. Revertants were serum resistant but caused approximately 10-fold less bacteraemia in orally challenged mice than did the wild-type strain. Southern hybridizations of the revertants showed rearrangement of sapA homologues and retention of the km marker. These results indicate that there exists high-frequency generation of C. fetus sapA antigenic variants, and that intracellular mechanisms acting at the level of DNA reciprocal recombination play key roles in this phenomenon.
Accumulating evidence suggests that viruses play an important role in the development of diabetes. Although the diabetogenic encephalomyocarditis strain D virus induces diabetes in restricted lines of inbred mice, the susceptibility genes to virus-induced diabetes have not been identified. We report here that novel Tyrosine kinase 2 (Tyk2) gene mutations are present in virus-induced diabetes-sensitive SJL and SWR mice. Mice carrying the mutant Tyk2 gene on the virus-resistant C57BL/6 background are highly sensitive to virus-induced diabetes. Tyk2 gene expression is strongly reduced in Tyk2-mutant mice, associated with low Tyk2 promoter activity, and leads to decreased expression of interferon-inducible genes, resulting in significantly compromised antiviral response. Tyk2-mutant pancreatic β-cells are unresponsive even to high dose of Type I interferon. Reversal of virus-induced diabetes could be achieved by β-cell-specific Tyk2 gene expression. Thus, reduced Tyk2 gene expression in pancreatic β-cells due to natural mutation is responsible for susceptibility to virus-induced diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.