Mesenchymal stem cells (MSCs) are attractive cell sources in regenerative medicine. We examined the effects of topical MSCs implantation on an experimental model of inflammatory bowel disease. Putative MSCs, isolated from bone marrow aspirates of male rats by dish adherence and expanded in vitro, were characterized by flow cytometry, reverse transcriptionpolymerase chain reaction, enzyme-linked immunosorbent assay, and differentiation assays. Experimental colitis was induced by intraluminal instillation of 2,4,6-trinitrobonzene sulfonic acid (TNBS) in the colons of male rats. The putative MSCs and unselected fresh bone marrow cells were injected into the colonic submucosa surrounding the area exposed to TNBS. The healing process of the injury was examined macroscopically and immunohistologically. Multipotent MSCs positive for CD29 and CD90, and negative for CD31 and CD34, were implanted into colon tissue surrounding the lesion; a majority of the engrafted cells were positive for vimentin. The implantation significantly accelerated healing of the damaged mucosa compared with vehicle-injected controls. The MSCs expressed vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-1 in vitro and after the implantation. In conclusion, we found that MSCs were successfully topically implanted in the colon and that they were associated with accelerated healing of TNBS-induced colitis. The beneficial effects of the MSCs might be mediated, at least in part, by their ability to differentiate into colonic interstitial cells and by their ability to provide VEGF and TGF-1 to the injured area.
G0F/G2F is a potentially effective diagnostic marker of disease activity in both CD and UC, and of the clinical course in UC. A pathophysiologic difference between CD and UC was also demonstrated.
Mesenchymal stem cells (MSCs), a subpopulation of adult somatic stem cells, are an attractive stem cell source in regenerative medicine because of their multipotentiality. We examined the effects of MSC transplantation on gastric ulcer healing. Putative MSCs, isolated from bone marrow aspirates of male rats by dish adherence and expanded in culture, were characterized by flow cytometry and reverse transcription-polymerase chain reaction. Gastric ulcers were induced by serosal application of acetic acid on the anterior wall of the stomach in female rats. Either MSCs (labeled with PKH67; 1x10(7) cells) or vehicle was injected into the gastric wall surrounding the ulcer. The healing process of the ulcer and the influence of anti-vascular endothelial growth factor (VEGF) antibody were examined. CD29-positive, CD90-positive, CD34-negative, and CD45-negative MSCs expressed mRNAs for VEGF and hepatocyte growth factor (HGF). The MSCs were transplantable to the gastric tissue surrounding the ulcer, where a majority of the engrafted cells were positive for vimentin. The transplantation significantly accelerated gastric ulcer healing compared with controls. The engrafted MSCs also expressed VEGF and HGF. Administration of anti-VEGF neutralizing antibody dose dependently reduced the MSC-induced promotion of ulcer healing. In conclusion, MSC transplantation accelerated gastric ulcer healing, possibly through the induction of angiogenesis in the gastric mucosa via the secretion of VEGF. The beneficial effects of MSCs might be mediated not only by their differentiation into gastric interstitial cells, but also by their ability to supply angiogenic factors.
The present study was planned to identify novel serum antibody markers for digestive organ cancers. We have used screening by phage expression cloning and identified novel fourteen antigens in this experiment. The presence of auto-antibodies against these antigens in serum specimens was confirmed by western blotting. As for auto-antibodies against fourteen antigens, AlphaLISA (amplified luminescence proximity homogeneous assay) assay was performed in the sera of gastrointestinal cancers patients to confirm the results. Serum antibody levels against these fourteen recombinant proteins as antigens between healthy donors (HD) and esophageal squamous cell carcinoma (ESCC) patients, gastric cancer (GC), or colon cancer (CC) were compared. The serum levels of all fourteen auto-antibodies were significantly higher in ESCC and GC than those of HD. Among those auto-antibodies, except ECSA2 and CCNL2, were also detected significantly higher levels in CC than those of HD. Receiver operating curve (ROC) revealed similar results except CCNL2 in CC. AUC values calculated by ROC were higher than 0.7 in auto-antibodies against TPI1, HOOK2, PUF60, PRDX4, HS3ST1, TUBA1B, TACSTD2, AKR1C3, BAMBI, DCAF15 in ESCC, auto-antibodies against TPI1, HOOK2, PUF60, PRDX4, TACSTD2, AKR1C3, BAMBI, DCAF15 in GC, and auto-antibodies against TPI1, HOOK2, PUF60 in CC. AUC of the combination of HOOK2 and anti-p53 antibodies in ESCC was observed to be as high as 0.8228. Higher serum antibody levels against ten antigens could be potential diagnostic tool for ESCC. Higher serum antibody levels against eight antigens could be potential diagnostic tool for GC, and serum antibody levels against three antigens could be potential diagnostic tool for CC.
Bone-marrow-derived cells (BMDCs) transdifferentiate into various types of gastrointestinal cells. The precise transdifferentiation of BMDCs in gut regeneration, however, is controversial. In this study, we examined the transdifferentiation of BMDCs in the regeneration of damaged colonic epithelia. Lethally irradiated wild-type female mice (C57BL/6) were rescued by bone marrow transplantation from male green fluorescent protein transgenic mouse donors. Chronic colitis was induced by administering 3% dextran sulfate sodium (DSS) in the drinking water for 5 days on day 28 after the bone marrow transplantation. The mice were killed on day 25 after DSS administration. BMDC phenotypes were examined by confocal microscopy and fluorescence immunohistochemistry. BMDCs were frequently observed in the vimentin-positive colonic interstitial cells, which also expressed α-smooth muscle actin and had a spindle-like morphology, but did not express leukocyte common antigen. Green-fluorescent-protein-positive cells were rarely or less frequently found in Ki-67-positive proliferating cells, cytokeratin-positive epithelial cells, or CD31-positive endothelial cells. BMDCs frequently transdifferentiated into subepithelial myofibroblasts and fibroblasts, and often continued to reside in the colonic subepithelia after the experimental colitis had healed. In conclusion, our data indicate the fate of BMDCs, which might be involved in the healing process of the colon after DSS-induced colitis. Our data show that BMDCs contribute to colonic interstitial cells after the colitis has healed. Understanding the fate of BMDCs may be important for stem cell therapy by BMDCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.