Rubisco limits photosynthetic CO 2 fixation because of its low catalytic turnover rate (k cat ) and competing oxygenase reaction. Previous attempts to improve the catalytic efficiency of Rubisco by genetic engineering have gained little progress. Here we demonstrate that the introduction of the small subunit (RbcS) of high k cat Rubisco from the C 4 plant sorghum (Sorghum bicolor) significantly enhances k cat of Rubisco in transgenic rice (Oryza sativa). Three independent transgenic lines expressed sorghum RbcS at a high level, accounting for 30%, 44%, and 79% of the total RbcS. Rubisco was likely present as a chimera of sorghum and rice RbcS, and showed 1.32-to 1.50-fold higher k cat than in nontransgenic rice. Rubisco from transgenic lines showed a higher K m for CO 2 and slightly lower specificity for CO 2 than nontransgenic controls. These results suggest that Rubisco in rice transformed with sorghum RbcS partially acquires the catalytic properties of sorghum Rubisco. Rubisco content in transgenic lines was significantly increased over wild-type levels but Rubisco activation was slightly decreased. The expression of sorghum RbcS did not affect CO 2 assimilation rates under a range of CO 2 partial pressures. The J max /V cmax ratio was significantly lower in transgenic line compared to the nontransgenic plants. These observations suggest that the capacity of electron transport is not sufficient to support the increased Rubisco capacity in transgenic rice. Although the photosynthetic rate was not enhanced, the strategy presented here opens the way to engineering Rubisco for improvement of photosynthesis and productivity in the future.
The effects of overexpression of Rubisco activase on photosynthesis were studied in transgenic rice expressing barley or maize Rubisco activase. Immunoblot and SDS-PAGE analyses showed that transgenic lines from both gene constructs expressed the foreign Rubisco activase at high levels. The activation state of Rubisco in transgenic lines was slightly higher than that in non-transgenic plants (NT). In addition, light activation of Rubisco was significantly more rapid in transgenic lines compared with NT. These findings indicate that the overexpression of Rubisco activase can enhance Rubisco activation. However, despite enhanced activation of Rubisco in these transgenic plants, the CO(2) assimilation rate at ambient CO(2) conditions was decreased. This decrease in CO(2) assimilation rate was observed in both young developing and mature leaves independent of nitrogen nutrition. The contents of nitrogen and Chl did not differ significantly between transformants and NT; however, Rubisco content was substantially decreased in transgenic lines. There was no evidence for reduced transcription of RbcS or RbcL in these transgenic lines; in fact, transcript levels were marginally increased compared with NT. These results indicate that the overexpression of Rubisco activase leads to a decrease in Rubisco content, possibly due to post-transcriptional mechanisms.
A unique CO 2 -Responsive CONSTANS, CONSTANS-like, and Time of Chlorophyll a/b Binding Protein1 (CCT) Protein (CRCT) containing a CCT domain but not a zinc finger motif is described, which is up-regulated under elevated CO 2 in rice (Oryza sativa). The expression of CRCT showed diurnal oscillation peaked at the end of the light period and was also increased by sugars such as glucose and sucrose. Promoter b-glucuronidase analysis showed that CRCT was highly expressed in the phloem of various tissues such as leaf blade and leaf sheath. Overexpression or RNA interference knockdown of CRCT had no appreciable effect on plant growth and photosynthesis except that tiller angle was significantly increased by the overexpression. More importantly, starch content in leaf sheath, which serves as a temporary storage organ for photoassimilates, was markedly increased in overexpression lines and decreased in knockdown lines. The expressions of several genes related to starch synthesis, such as ADP-glucose pyrophospholylase and a-glucan phospholylase, were significantly changed in transgenic lines and positively correlated with the expression levels of CRCT. Given these observations, we suggest that CRCT is a positive regulator of starch accumulation in vegetative tissues, regulating coordinated expression of starch synthesis genes in response to the levels of photoassimilates.
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter b-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and K m for CO 2 of the enzyme and slightly decreased the specificity for CO 2 , indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO 2 assimilation rate at low CO 2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO 2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.
Steroidal glycoalkaloids are naturally occurring, secondary plant metabolites that are found in foods, including potatoes and tomatoes. Their content in plants is controlled by both genetic and environmental factors. Glycoalkaloid profiles can be passed to progenies during breeding and hybridization of wild and cultivated potatoes designed to develop improved potatoes. The most common potato, Solanum tuberosum, contains primarily the glycoalkaloids, alpha-solanine and alpha-chaconine. However, wild-type potatoes being used for breeding new varieties contain other, less common glycoalkaloids. Because glycoalkaloid composition is a major criterion for the release of new potato cultivars, we used HPLC, TLC, GC, and GC/MS to determine their nature and content in several Solanum species widely used in potato breeding and hybridization programs. Solanum tuberosum, as well as S. andigena and S. stenotomum, contained alpha-solanine and alpha-chaconine. S. canasense was found to contain only dehydrocommersonine. S. acaule contained alpha-tomatine and demissine. S. juzepczukii and S. curtilobum contained demissine and two previously unidentified glycoalkaloids. We characterized them as demissidine-glucose/rhamnose (1/1 ratio) and demissidine-galactose/glucose/rhamnose (1/1/1 ratio), tentatively named dihydro-beta(1)-chaconine and dihydrosolanine, respectively. We found extensive variability in the glycoalkaloid profiles in the tested potato varieties. The possible significance of these findings for plant breeding and food safety is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.