Respiratory droplets are the primary transmission route for SARS-CoV-2, a principle which drives social distancing guidelines. Evidence suggests that virus transmission can be reduced by face coverings, but robust evidence for how mask usage might affect safe distancing parameters is lacking. Accordingly, we set out to quantify the effects of face coverings on respiratory tract droplet deposition. We tested an anatomically realistic manikin head which ejected fluorescent droplets of water and human volunteers, in speaking and coughing conditions without a face covering, or with a surgical mask or a single-layer cotton face covering. We quantified the number of droplets in flight using laser sheet illumination and UV-light for those that had landed at table height at up to 2 m. For human volunteers, expiratory droplets were caught on a microscope slide 5 cm from the mouth. Whether manikin or human, wearing a face covering decreased the number of projected droplets by less than 1000-fold. We estimated that a person standing 2 m from someone coughing without a mask is exposed to over 10 000 times more respiratory droplets than from someone standing 0.5 m away wearing a basic single-layer mask. Our results indicate that face coverings show consistent efficacy at blocking respiratory droplets and thus provide an opportunity to moderate social distancing policies. However, the methodologies we employed mostly detect larger (non-aerosol) sized droplets. If the aerosol transmission is later determined to be a significant driver of infection, then our findings may overestimate the effectiveness of face coverings.
The ability to accurately predict the forces on an aerofoil in real-time when large flow variations occur is important for a wide range of applications such as, for example, for improving the manoeuvrability and control of small aerial and underwater vehicles. Closed-form analytical formulations are only available for small flow fluctuations, which limits their applicability to gentle manoeuvres. Here we investigate large-amplitude, asymmetric pitching motions of a NACA 0018 aerofoil at a Reynolds number of $$3.2 \times 10^4$$ 3.2 × 10 4 using time-resolved force and velocity field measurements. We adapt the linear theory of Theodorsen and unsteady thin-aerofoil theory to accurately predict the lift on the aerofoil even when the flow is massively separated and the kinematics is non-sinusoidal. The accuracy of the models is remarkably good, including when large leading-edge vortices are present, but decreases when the leading and trailing edge vortices have a strong interaction. In such scenarios, however, discrepancies between the theoretically predicted and the measured lift are shown to be due to vortex lift that is calculated using the impulse theory. Based on these results, we propose a new limiting criterion for Theodorsen’s theory for a pitching aerofoil: when a coherent trailing-edge vortex is formed and it advects at a significantly slower streamwise velocity than the freestream velocity. This result is important because it extends significantly the conditions where the forces can be confidently predicted with Theodorsen’s formulation, and paves the way to the development of low-order models for high-amplitude manoeuvres characterised by massive separation. Graphic abstract
An unsteady lifting-line theory for time-domain problems with arbitrary kinematics is presented. This is formulated by matching a vortex particle based 2D inner model with a 3D vortex lattice wake. This and a small-amplitude frequency-domain unsteady lifting-line theory are then verified against experiment and computational fluid dynamics for the case of a flat rectangular plate oscillating in heave at aspect ratios 3 and 6. Both lifting-line theories were found to generally be in good agreement with experimental and CFD results, providing reasonable solutions even in cases dominated by LEV shedding. For larger amplitude problems, the new non-linear geometry lifting-line theory predicted larger amplitudes and higher average lift coefficient than the small-amplitude lifting-line theory.
Unsteady Lifting-Line Theory (ULLT) is a low order method capable of modeling interacting unsteady and finite wing effects at low computational cost. Most formulations of the method assume inviscid flow and small amplitudes. Whilst these assumptions might be suitable for small-amplitude aeroelastic problems at high Reynolds numbers, modern engineering applications increasingly involve lower Reynolds numbers, large amplitude kinematics and vortex structures that lead to aerodynamic non-linearities. This paper establishes that ULLT still provides a good solution for low Reynolds number, large-amplitude kinematics problems, by comparing ULLT results against those of experimentally validated computational fluid dynamics simulations at Re=10 000.
Respiratory droplets are the primary transmission route for SARS-CoV-2. Evidence suggests that virus transmission can be reduced by face coverings, but robust evidence for how mask usage might affect safe distancing parameters is lacking. Accordingly, we investigate the effectiveness of surgical masks and single-layer cotton masks on mitigating dispersion of large respiratory droplets (i.e. non aerosol). We tested a manikin ejecting fluorescent droplets and human volunteers in speaking and coughing conditions. We quantified the number of droplets in flight using laser sheet illumination and UV-light for those that had landed at table height at up to 2m. For human volunteers, expiratory droplets were caught on a microscope slide 5cm from the mouth. Whether manikin or human, wearing a face covering decreased the number of projected droplets by >1000-fold. We estimated that a person standing 2m from someone coughing without a mask is exposed to over 1000 times more respiratory droplets than from someone standing 5 cm away wearing a basic single layer mask. Our results indicate that face coverings show consistent efficacy at blocking respiratory droplets. If aerosol transmission is later determined to be a significant driver of infection, then our findings may overestimate the effectiveness of face coverings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.