Three-dimensional (3D) reconstruction techniques are playing an increasingly important role in education and entertainment. Real and recognizable avatars can enhance the immersion and interactivity of virtual systems. In 3D face modeling technology, face texture carries vital face recognition information. Therefore, this study proposes a panoramic 3D face texture generation method for 3D face reconstruction from a single 2D face image based on a 3D Morphable model (3DMM). Realistic and comprehensive panoramic facial textures can be obtained using generative networks as texture converters. Furthermore, we propose a low-cost method for generating face texture datasets for data collection. Experimental results show that the proposed method can generate panoramic face textures for 3D face meshes from a single image input, resulting in the final generation of textured 3D models that look realistic from different viewpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.