The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for GROMACS (g_mmpbsa) is an open-source tool that is capable of reading the trajectories generated by GROMACS and calculating the binding free energy using the MM-PBSA method. However, there are multiple force fields available for users to choose from in the GROMACS software, and there are also different solvent water models to combine with the chosen force fields. These different combinations of parameters may significantly impact the results of g_mmpbsa calculation. Unfortunately, the exact combination of force field and solvent water that can well calculate the free energy of the receptor-ligand binding in GROMACS has not been explored yet. To resolve the above issues, this study mainly explored the molecular dynamics (MD) simulations by GROMACS with the six commonly used force fields and three solvent water models, in combination with g_mmpbsa, to calculate the binding free energies of the influenza virus neuraminidase and its mutants with inhibitor oseltamivir carboxylate and compared the present results with previous published results of Amber software from ours and other researchers. Finally, we provided an optimized calculation model, as well as suggestions that may serve as advice and guidance for future computer-aided designs of drug molecules.
K E Y W O R D Sbinding free energy, g_mmpbsa, MM-PBSA methods, neuraminidase Jiayi Ren and Xiaohui Yuan contributed equally to this work.
An understanding of the interaction between the antibody and its targeted antigen and knowing of the epitopes are critical for the development of monoclonal antibody drugs. Complement factor H (CFH) is implied to play a role in tumor growth and metastasis. An autoantibody to CHF is associated with anti-tumor cell activity. The interaction of a human monoclonal antibody Ab42 that was isolated from a cancer patient with CFH polypeptide (pCFH) antigen was analyzed by molecular docking, molecular dynamics (MD) simulation, free energy calculation, and computational alanine scanning (CAS). Experimental alanine scanning (EAS) was then carried out to verify the results of the theoretical calculation. Our results demonstrated that the Ab42 antibody interacts with pCFH by hydrogen bonds through the Tyr315, Ser100, Gly33, and Tyr53 residues on the complementarity-determining regions (CDRs), respectively, with the amino acid residues of Pro441, Ile442, Asp443, Asn444, Ile447, and Thr448 on the pCFH antigen. In conclusion, this study has explored the mechanism of interaction between Ab42 antibody and its targeted antigen by both theoretical and experimental analysis. Our results have important theoretical significance for the design and development of relevant antibody drugs.
Highlights d Neutralizing human mAbs target epitopes on tetanus toxin (TeNT) fragments C, B, and AB d High neutralization potency at 17 mg to 6 mg each are equivalent to 250 IU TIG d Co-crystal reveals that mAb TT0067 directly occupies the W pocket on fragment C d Pre-administration of mAb TT0069 protects mice from later lethal challenge with TeNT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.