The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS). In intact cells, respiratory mitochondria exhibit spontaneous "superoxide flashes", the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT). Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP, and demonstrate their coupling to whole-body glucose metabolism. Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice. In skeletal muscle, imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously. The tMPT/ superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation, in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT. Thus, in vivo imaging of tMPTdependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.
Astrocytes release a variety of signaling molecules including glutamate, D-serine, and ATP in a regulated manner. Although the functions of these molecules, from regulating synaptic transmission to controlling specific behavior, are well documented, the identity of their cellular compartment(s) is still unclear. Here we set out to study vesicular exocytosis and glutamate release in mouse hippocampal astrocytes. We found that small vesicles and lysosomes coexisted in the same freshly isolated or cultured astrocytes. Both small vesicles and lysosome fused with the plasma membrane in the same astrocytes in a Ca 2ϩ -regulated manner, although small vesicles were exocytosed more efficiently than lysosomes. Blockade of the vesicle glutamate transporter or cleavage of synaptobrevin 2 and cellubrevin (both are vesicle-associated membrane proteins) with a clostridial toxin greatly inhibited glutamate release from astrocytes, while lysosome exocytosis remained intact. Thus, both small vesicles and lysosomes contribute to Ca 2ϩ -dependent vesicular exocytosis, and small vesicles support glutamate release from astrocytes.
Microglia play a pivotal role in clearance of Aβ by degrading them in lysosomes, countering amyloid plaque pathogenesis in Alzheimer’s disease (AD). Recent evidence suggests that lysosomal dysfunction leads to insufficient elimination of toxic protein aggregates. We tested whether enhancing lysosomal function with transcription factor EB (TFEB), an essential regulator modulating lysosomal pathways, would promote Aβ clearance in microglia. Here we show that microglial expression of TFEB facilitates fibrillar Aβ (fAβ) degradation and reduces deposited amyloid plaques, which are further enhanced by deacetylation of TFEB. Using mass spectrometry analysis, we firstly confirmed acetylation as a previously unreported modification of TFEB and found that SIRT1 directly interacted with and deacetylated TFEB at lysine residue 116. Subsequently, SIRT1 overexpression enhanced lysosomal function and fAβ degradation by upregulating transcriptional levels of TFEB downstream targets, which could be inhibited when TFEB was knocked down. Furthermore, overexpression of deacetylated TFEB at K116R mutant in microglia accelerated intracellular fAβ degradation by stimulating lysosomal biogenesis and greatly reduced the deposited amyloid plaques in the brain slices of APP/PS1 transgenic mice. Our findings reveal that deacetylation of TFEB could regulate lysosomal biogenesis and fAβ degradation, making microglial activation of TFEB a possible strategy for attenuating amyloid plaque deposition in AD.Electronic supplementary materialThe online version of this article (doi:10.1007/s13238-016-0269-2) contains supplementary material, which is available to authorized users.
The temperature-sensitive TRP channel, TRPA1, is known to mediate Na+ and Ca2+ influx at the plasma membrane of sensory neurons. In this study, the authors show that TRPA1 is also present on the lysosomal membrane and mediates lysosome Ca2+ release in dorsal root ganglion neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.