A new family of distributions called exponentiated Kumaraswamy-Dagum (EKD) distribution is proposed and studied. This family includes several well known sub-models, such as Dagum (D), Burr III (BIII), Fisk or Log-logistic (F or LLog), and new sub-models, namely, Kumaraswamy-Dagum (KD), Kumaraswamy-Burr III (KBIII), Kumaraswamy-Fisk or Kumaraswamy-Log-logistic (KF or KLLog), exponentiated Kumaraswamy-Burr III (EKBIII), and exponentiated Kumaraswamy-Fisk or exponentiated Kumaraswamy-Log-logistic (EKF or EKLLog) distributions. Statistical properties including series representation of the probability density function, hazard and reverse hazard functions, moments, mean and median deviations, reliability, Bonferroni and Lorenz curves, as well as entropy measures for this class of distributions and the sub-models are presented. Maximum likelihood estimates of the model parameters are obtained. Simulation studies are conducted. Examples and applications as well as comparisons of the EKD and its sub-distributions with other distributions are given. Mathematics Subject Classification (2000): 62E10; 62F30
In this paper, a new generalized distribution called the log-logistic Weibull (LLoGW) distribution is developed and presented. This distribution contain the log-logistic Rayleigh (LLoGR), log-logistic exponential (LLoGE) and log-logistic (LLoG) distributions as special cases. The structural properties of the distribution including the hazard function, reverse hazard function, quantile function, probability weighted moments, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, distribution of order statistics, Lmoments and Rényi entropy are derived. Method of maximum likelihood is used to estimate the parameters of this new distribution. A simulation study to examine the bias, mean square error of the maximum likelihood estimators and width of the confidence intervals for each parameter is presented. Finally, real data examples are presented to illustrate the usefulness and applicability of the model.
A new generalized class of distributions called the Burr-Weibull Power Series (BWPS) class of distributions is developed and explored. This class of distributions generalizes the Burr power series and Weibull power series classes of distributions, respectively. A special model of the BWPS class of distributions, the new Burr-Weibull Poisson (BWP) distribution is considered and some of its mathematical properties are obtained. The BWP distribution contains several new and well known sub-models, including Burr-Weibull, Burr-exponential Poisson, Burr-exponential, Burr-Rayleigh Poisson, Burr-Rayleigh, Burr-Poisson, Burr, Lomax-exponential Poisson, Lomax-Weibull, Lomax-exponential, Lomax-Rayleigh, Lomax-Poisson, Lomax, Weibull, Rayleigh and exponential distributions. Maximum likelihood estimation technique is used to estimate the model parameters followed by a Monte Carlo simulation study. Finally an application of the BWP model to a real data set is presented to illustrate the usefulness of the proposed class of distributions.
Energy metabolism and circadian rhythms are closely related together, i.e., the timing of nutrient intake affects metabolism under the regulation of circadian rhythms. Previously, we have reported that cacao liquor procyanidin (CLPr) promotes energy metabolism, resulting in preventing obesity and hyperglycemia. However, it is not unclear whether CLPr regulates clock gene expression. In this study, we investigated whether the administration timing of CLPr affected clock gene expression and found that CLPr regulated the circadian clock gene expression through the glucagon-like peptide-1 (GLP-1) signaling pathway. CLPr administration at Zeitgeber time 3 increased the expression level of Per family and Dbp in the liver. At the same administration timing, CLPr increased GLP-1 and insulin concentration in the plasma and phosphorylation of AMPK in the liver. It was noteworthy that an antagonist for GLP-1 receptor Exendin (9-39) canceled CLPr-increased expression of Per family and Dbp and phosphorylation of AMPK in the liver, in addition to insulin secretion. These results strongly suggest that CLPr-induced GLP-1 regulates the changes in clock gene expression in the liver through increased insulin. Thus, CLPr is a possible functional food material for prevention and/or amelioration of metabolic disorders through preventing circadian disruption through GLP-1 and AMPK pathways.
A new family of generalized distributions called the beta Weibull-G (BWG) distribution is proposed and developed. This new class of distributions has several new and well known distributions including exponentiated-G, Weibull-G, Rayleigh-G, exponential-G, beta exponential-G, beta Rayleigh-G, beta Rayleigh exponential, beta-exponential-exponential, Weibull-log-logistic distributions, as well as several other distributions such as beta Weibull-Uniform, beta Rayleigh-Uniform, beta exponential-Uniform, beta Weibull-log logistic and beta Weibull-exponential distributions as special cases. Series expansion of the density function, hazard function, moments, mean deviations, Lorenz and Bonferroni curves, R\'enyi entropy, distribution of order statistics and maximum likelihood estimates of the model parameters are given. Application of the model to real data set is presented to illustrate the importance and usefulness of the special case beta Weibull-log-logistic distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.