A ZnO p-n junction light-emitting diode (LED) was fabricated on a-plane Al2O3 substrate by plasma-assisted molecular-beam epitaxy. NO plasma activated by a radio frequency atomic source was used to grow the p-type ZnO layer of the LED. The current-voltage measurements at low temperatures showed a typical diode characteristic with a threshold voltage of about 4.0V under forward bias. With increasing temperature, the rectification characteristic was degraded gradually, and faded away at room temperature. Electroluminescence band of the ZnO p-n junction LED was located at the blue-violet region and was weakened significantly with increase of temperature. This thermal quenching of the electroluminescence was attributed to the degradation of the diode characteristic with temperature.
A newly-designed photoelectrochemical self-powered detector is applied to an α-Ga2O3 nanorod array to realize the detection of solar-blind ultraviolet light (wavelengths below 300 nm) and fast response (rise time of 0.076 s and decay time of 0.056 s).
Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2.
A metal-semiconductor-metal (MSM) structure ultraviolet photodetector has been fabricated from amorphous InGaZnO (a-IGZO) film at room temperature. The photodetector can work without consuming external power and show a responsivity of 4 mA/W. The unbiased photoresponse characteristic is attributed to the hole-trapping process occurred in the electrode/a-IGZO interface, and a physical model based on band energy theory is proposed to explain the origin of the photoresponse at zero bias in our device. Our findings may provide a way to realize unbiased photoresponse in the simple MSM structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.