The temperature of advanced components in aviation and aerospace fields is difficult to obtain timely. In this study, we aimed to investigate microwave backscattering technology combined with the theory of substrate integrated waveguide and resonant cavity to design a wireless passive temperature sensor and explore its potential in this field. We employed silicon carbide and aluminum ceramic as the substrate to make sensors. The interrogation antenna was designed to test the sensor, which could completely cover the working frequency of the sensor and had good radiation characteristics. Based on the test results, the silicon carbide sensor was capable of bearing a temperature limit of about 1000 °C compared to the alumina sensor. From 25 °C to 500 °C, its sensitivity was 73.68 kHz/°C. Furthermore, the sensitivity was 440 kHz/°C in the range of 501 °C to 1000 °C. Moreover, we observed the surface of this sensor by using the scanning electron microscope, and the results showed that the damage to the sensor surface film structure caused by long-term high temperature is the major reason for the failure of the sensor. In conclusion, the performance of the silicon carbide sensor is superior to the alumina sensor.
A new type of wireless passive, high sensitivity, high temperature sensor was designed to meet the real-time temperature test in the harsh aero-engine environment. The sensor consists of a complementary split ring resonator and a substrate integrated circular waveguide (CSRR-SICW) structure and is based on high temperature resistant Si3N4 ceramic as the substrate material. Temperature is measured by real-time monitoring of the resonant frequency of the sensor. In addition, the ambient temperature affects the dielectric constant of the dielectric substrate, and the resonant frequency of the sensor is determined by the dielectric constant, so the function relationship between temperature and resonant frequency can be established. The experimental results show that the resonant frequency of the sensor decreases from 11.3392 GHz to 11.0648 GHz in the range of 50–1000 °C. The sensitivity is 123 kHz/°C and 417 kHz/°C at 50–450 °C and 450–1000 °C, respectively, and the average test sensitivity is 289 kHz/°C. Compared with previously reported high temperature sensors, the average test sensitivity is approximately doubled, and the test sensitivity at 450–1000 °C is approximately three times higher. Therefore, the proposed high sensitivity sensor has promising prospects for high temperature measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.