Voltammetric studies on the simple ion transfer (IT) behaviors of an important water-soluble B-vitamin, folic acid (FA), at the liquid-liquid (L-L) interface were firstly performed and then applied as a novel detection method for FA under physiological conditions. Meso-water-1,6-dichlorohexane (W-DCH) and meso-water-organogel interface arrays were built by using a hybrid mesoporous silica membrane (HMSM) with a unique structure of pores-in-pores and employed as the new platforms for the IT voltammetric study. In view of the unique structure of the HMSM, the impact of the ionic surfactant cetyltrimethylammonium bromide (CTAB), self-assembled within the silica nanochannels of the HMSM, was investigated. In particular, its effect on the IT voltammetric behavior and detection of FA at meso-L-L interface arrays was systematically examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and differential pulse stripping voltammetry (DPSV). It was found that all the voltammetric responses of CV, DPV, and DPSV and the corresponding detection limit of FA at such meso-L-L interface arrays are closely related to the CTAB in the HMSM. Significantly, the calculated detection limit of FA could be improved to 80 nM after the combination of the DPSV technique with the additional preconcentration of FA in the silica-CTAB nanochannels, achieved through an anion-exchange process between FA(-) and the bromide of CTAB in HMSM. This provides a new and attractive strategy for the detection of those biological anions.
An organic/inorganic hybrid mesoporous silica membrane (HMSM) composed of mesoporous silica rods in the channels of a polycarbonate (PC) membrane was rapidly synthesized by employing the microwaveassisted method combined with solvent extraction. As-synthesized HMSMs were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), N 2 adsorption-desorption, X-ray diffraction (XRD) and thermogravimetry (TG). The results indicated that silica rods with 200 nm diameter and 9 mm length grew in the confined spaces of the PC membrane. The average diameter of mesopores with partially ordered hexagonal mesostructure was about 6.0 nm. In addition, it was found that an enzyme with suitable size, such as horseradish peroxidase (HRP), could be immobilized inside the mesopores of HMSM through physical adsorption.
Large-area nanostructured Ag/Ag-tetracyanoquinodimethane (TCNQ) Schottky junctions are fabricated electrochemically on a mesoporous polyethylene terephthalate (PET) membrane-supported water/1, 2-dichloroethane (DCE) interface. When the interface is polarized, Ag(+) ions transfer across the PET membrane from the aqueous phase and are reduced to form metallic Ag on the PET membrane, which reacts further with tetracyanoquinodimethane (TCNQ) in the DCE phase to form nanostructured Ag/AgTCNQ Schottky junctions. Once the mesoporous membrane is blocked by metallic Ag, a bipolar mechanism is proposed to explain the successive growth of AgTCNQ nanorods and Ag film on each side of the PET membrane. Due to the well-formed nanostructure of Ag/AgTCNQ Schottky junctions, the direct electrochemical behavior is observed, which is essential to explain the physicochemical mechanism of its electric performance. Moreover, the composite PET membrane with nanostructured Ag/AgTCNQ Schottky junctions is tailorable and can be assembled directly into electric devices without any pretreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.