The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.
Despite growing evidence for a mitochondrial localization of nitric oxide (NO) synthase and a broadening spectrum of NO actions on mitochondrial respiration and apoptosis, the basis for interaction between the enzyme and the organelle remain obscure. Here we investigated mitochondrial localization of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells and human embryonic kidney cells transfected or infected with eNOS expression vectors. Copurification of eNOS with mitochondria was observed in both human umbilical vein endothelial cells and eNOSexpressing human embryonic kidney cells. Immunodetectable eNOS was cleaved from mitochondria by proteinase K treatment, suggesting eNOS association with the outer mitochondrial membrane. Localization of eNOS to a proteinase K-cleavable site on the cytoplasmic face of the outer membrane was confirmed by immunogold labeling of non-permeabilized mitochondria. Markers for mitochondrial subfractions ruled out the possibility of eNOS association with an intramitochondrial site or inverted mitochondrial particles. Denaturation of eNOS did not attenuate association with mitochondria. Mutant eNOS lacking a pentabasic amino acid sequence within the autoinhibitory domain (residues 628 -632 of the bovine eNOS) showed dramatically reduced binding to the mitochondrial but not to the plasma membrane, which was associated with increased oxygen consumption. Collectively, these findings argue in favor of eNOS localization to the outer mitochondrial membrane in endothelial cells and identify elements of a novel anchoring mechanism.An association of NOS-like proteins with mitochondria has previously been demonstrated immunohistochemically (1-4). Further supporting evidence was provided by the partial purification of mitochondrial nitric oxide synthase (mtNOS) 1 activity (5, 6). There is an ongoing debate as to the identity of mtNOS; immunologic cross-reaction of mtNOS with antibodies against endothelial NOS (eNOS) (1, 3, 7), neuronal NOS (4), and inducible NOS (6) have been reported. A recent investigation (8) has identified a neuronal NOS in cardiomyocyte mitochondria. It has been suggested that mtNOS plays important roles in oxidative stress and apoptosis (9, 10), regulation of mitochondrial respiration (11,12), and modulation of intracellular Ca 2ϩ homeostasis (13).The potential distribution of mtNOS in subfractions of mitochondria has been explored but remains enigmatic. Some indirect evidence suggests that mtNOS is localized to the inner mitochondrial membrane. Indeed, immunohistochemical findings suggest that mtNOS co-localizes with succinate dehydrogenase, a mitochondrial marker for the inner membrane (2). Further support for an inner membrane localization of NOS in mitochondria came from NOS activity assays, which indicated that specific activity in submitochondrial particles and crude fractions was higher than that of mitochondrial homogenates or permeabilized mitochondria (14). In contrast, a recent report (15) suggested that eNOS localizes to the oute...
BackgroundA-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize.ResultsIn gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single "domain" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies.ConclusionBoth AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.