Monoclonal antibody (mAb) fragmentation can be a widespread problem across the biotechnology industry and there is a current need to better understand the underlying principles. Here, we report an example of a high-purity human IgG1 mAb prepared from CHO cells exhibiting fragmentation that can be attributed to residual proteolytic enzyme activity. The concomitant occurrence of proteolytic and non-proteolytic peptide bond cleavage is shown and the respective fragmentation patterns characterized using high-resolution LC-MS. Fragmentation rates are monitored by SE-HPLC and SDS-PAGE over the pH range 4-6 and characterized in the presence and absence of pepstatin A, an inhibitor of acidic proteases. After 20 days at 408C, pH 4, $60% decrease in BIIB-mAb monomer peak occurred attributed to residual proteolytic activity. At pH 5, this value was $13%. These results have implications for formulation design studies and the interpretation of accelerated stability data. A simple method to screen for acidic protease activity using the proteolytic enzyme inhibitor pepstatin A is described.
Screening for pharmaceutically viable stability from measurements of thermally induced protein unfolding and short-term accelerated stress underpins much molecule design, selection, and formulation in the pharmaceutical biotechnology industry. However, the interrelationships among intrinsic protein conformational stability, thermal denaturation, and pharmaceutical stability are complex. There are few publications in which predictions from thermal unfolding-based screening methods are examined together with pharmaceutically relevant long-term storage stability performance. We have studied eight developable therapeutic IgG molecules under solution conditions optimized for large-scale commercial production and delivery. Thermal unfolding profiles were characterized by differential scanning calorimetry (DSC) and intrinsic fluorescence recorded simultaneously with static light scattering (SLS). These molecules exhibit a variety of thermal unfolding profiles under common reference buffer conditions and under individually optimized formulation conditions. Aggregation profiles by SE-HPLC and bioactivity upon long-term storage at 5, 25, and 40 °C establish that IgG molecules possessing a relatively wide range of conformational stabilities and thermal unfolding profiles can be formulated to achieve pharmaceutically stable drug products. Our data suggest that a formulation design strategy that increases the thermal unfolding temperature of the Fab transition may be a better general approach to improving pharmaceutical storage stability than one focused on increasing Tonset or Tm of the first unfolding transition.
In the developing peripheral nervous system (PNS), axon-derived signals stimulate Schwann cells to undergo a global genetic reprogramming involving the cessation of cellular division and the upregulation of myelin genes. How such a comprehensive change in gene transcription is regulated is poorly understood. Here we report that BRG1/SMARCA4, the central helicase of the mammalian SWI/SNF-related chromatin remodeling complex, is required for Schwann cells to differentiate and form myelin, both in vitro and in vivo, in the mouse. BRG1 was highly activated in Schwann cells at early stages of myelination and loss of the enzyme inhibited their differentiation and completely prevented myelin formation. Furthermore, we identify NF-κB as a key transcription factor that associates with the BRG1 complex in response to neuregulin1 type III. During myelination, BRG1 was activated through the formation of a complex with NF-κB and both proteins bound to the promoter region of Sox10, an inducer of myelination. These findings delineate a novel mechanism whereby axonal signals promote myelination through the remodeling of chromatin structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.