An antibody, GC-17, thoroughly characterized for its specificity for estrogen receptor-beta (ER-beta), was used to immunolocalize the receptor in histologically normal prostate, prostatic intraepithelial neoplasia, primary carcinomas, and in metastases to lymph nodes and bone. Comparisons were made between ER-beta, estrogen receptor-alpha (ER-alpha), and androgen receptor (AR) immunostaining in these tissues. Concurrently, transcript expression of the three steroid hormone receptors was studied by reverse transcriptase-polymerase chain reaction analysis on laser capture-microdissected samples of normal prostatic acini, dysplasias, and carcinomas. In Western blot analyses, GC-17 selectively identified a 63-kd protein expressed in normal and malignant prostatic epithelial cells as well as in normal testicular and prostatic tissues. This protein likely represents a posttranslationally modified form of the long-form ER-beta, which has a predicted size of 59 kd based on polypeptide length. In normal prostate, ER-beta immunostaining was predominately localized in the nuclei of basal cells and to a lesser extent stromal cells. ER-alpha staining was only present in stromal cell nuclei. AR immunostaining was variable in basal cells but strongly expressed in nuclei of secretory and stromal cells. Overall, prostatic carcinogenesis was characterized by a loss of ER-beta expression at the protein and transcript levels in high-grade dysplasias, its reappearance in grade 3 cancers, and its diminution/absence in grade 4/5 neoplasms. In contrast, AR was strongly expressed in all grades of dysplasia and carcinoma. Because ER-beta is thought to function as an inhibitor of prostatic growth, androgen action, presumably mediated by functional AR and unopposed by the beta receptor, may have provided a strong stimulus for aberrant cell growth. With the exception of a small subset of dysplasias in the central zone and a few carcinomas, ER-alpha-stained cells were not found in these lesions. The majority of bone and lymph node metastases contained cells that were immunostained for ER-beta. Expression of ER-beta in metastases may have been influenced by the local microenvironment in these tissues. In contrast, ER-alpha-stained cells were absent in bone metastases and rare in lymph nodes metastases. Irrespective of the site, AR-positive cells were found in all metastases. Based on our recent finding of anti-estrogen/ER-beta-mediated growth inhibition of prostate cancer cells in vitro, the presence of ER-beta in metastatic cells may have important implications for the treatment of late-stage disease.
Estrogen receptor beta (ER-β) regulates diverse physiological functions in the human body. Current studies are confined to ER-β1, and the functional roles of isoforms 2, 4, and 5 remain unclear. Full-length ER-β4 and -β5 isoforms were obtained from a prostate cell line, and they exhibit differential expression in a wide variety of human tissues/cell lines. Through molecular modeling, we established that only ER-β1 has a full-length helix 11 and a helix 12 that assumes an agonist-directed position. In ER-β2, the shortened C terminus results in a disoriented helix 12 and marked shrinkage in the coactivator binding cleft. ER-β4 and -β5 completely lack helix 12. We further demonstrated that ER-β1 is the only fully functional isoform, whereas ER-β2, -β4, and -β5 do not form homodimers and have no innate activities of their own. However, the isoforms can heterodimerize with ER-β1 and enhance its transactivation in a ligand-dependent manner. ER-β1 tends to form heterodimers with other isoforms under the stimulation of estrogens but not phytoestrogens. Collectively, these data support the premise that (
i
) ER-β1 is the obligatory partner of an ER-β dimer, whereas the other isoforms function as variable dimer partners with enhancer activity, and (
ii
) a single functional helix 12 in a dimer is sufficient for gene transactivation. Thus, ER-β behaves like a noncanonical type-I receptor, and its action may depend on differential amounts of ER-β1 homo- and heterodimers formed upon stimulation by a specific ligand. Our findings have provided previously unrecognized directions for studying ER-β signaling and design of ER-β-based therapies.
G protein–coupled receptor 30 (GPR30) exhibits estrogen-binding affinity and mediates nongenomic signaling of estrogen to regulate cell growth. We here demonstrated for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited growth of androgen-dependent and -independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1-induced cell-cycle arrest at the G2 phase and reduced the expression of G2-checkpoint regulators (cyclin A2, cyclin B1, cdc25c, and cdc2) and the phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With the extensive use of siRNA knockdown experiments and the MEK inhibitor PD98059 in the present study, we dissected the mechanism underlying G-1–induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by a sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G2 phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.